

INTERNATIONAL SYMPOSIUM

GU-Alliance for Research and Development

PRESENCIAL RETRANSMITIDO EN DIRECTO FACE-TO-FACE AND LIVE STREAMING

26-27 JUNIO 2025

Espacio Maldonado, Madrid

How to treat patients in 2nd line after progression to TKI+IO?

Prof Roberto lacovelli

Catholic University of Rome – Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Disclosures

I have the following potential conflict(s) of interest to report

Advisory board: Astellas, BMS, Ipsen, Genenta, J&J, Merk, MSD, Pfizer, Sanofi, Bayer, EISAI.

Consultant: Astellas, Ipsen, Merk, MSD, Pfizer, EISAI.

Research support (inst): BMS, Merck, MSD, Pfizer.

PI clinical trial: BMS, Exelixis, Ipsen, Lilly, MSD, Seagen.

Guideline member: AIOM (prostate and renal cancer)

Scientific associations member: ESMO, AIOM, SIURO

Patients' advocacy association member: EuropaUomo (scientific committee); IKCS-EU (scientific committee 2024-2027)

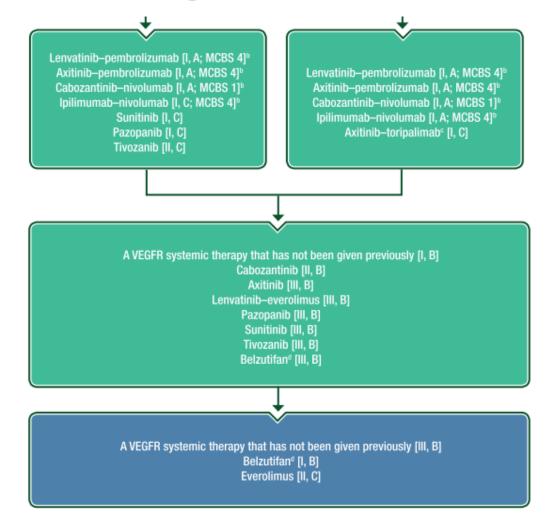
Agenda


- What we know about subsequent therapies in KN264, CLEAR and CM-9ER
- What the guidelines suggest?
- What about the alternative TKI and what is the most used?
- How to do better and what are the alternative strategies?
- Where are we going?
- Limits of the available and future data.

What happened in 1L TKI-IO RCT?

	KN 426 ¹ Axitinib+Pembro	CM9ER ² Cabozantinib-Nivo	CLEAR ³ Lenva+Pembro
Patients	432	323	355
Follow up median (mos)	43.0	67.6	49.8
Discontinued TX	349/429 (81%)	299/320 (93%)	297/352 (84%)
Received Subsequent Tx	58%	43%	51%
Anti-PD(L)1	22%	36%	16%
VEGF(R) inhibitors	88%	79%	46%
Anti-CTLA4	2%	10%	3%
Other	32%	37%	6%
Number of lines* ≥1	_	40%	34%
≥2		11%	9%
≥3	-	4%	6%

^{*}Among all treated pts


^{1.} Plimack ER, et al. Eur Urol. 2023;84(5):449-454.

^{2.} Motzer RJ, ASCO-GU2025; abstract number 439.

^{3.} Motzer RJ, et al. J Clin Oncol. 2024;42:1222-1228.

Suggestions from guidelines

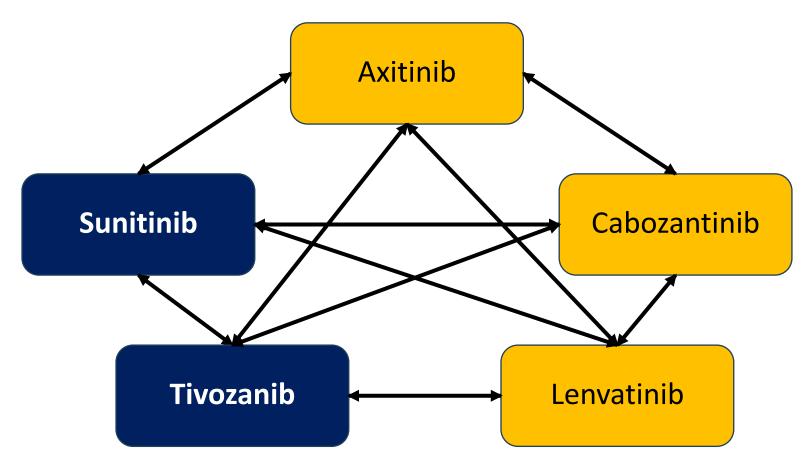
ESMO guidelines

Suggestions from guidelines

NCCN guidelines

PLEASE NOTE that use of this NCCN Content is governed by the End-User License Agreement, and you MAY NOT distribute this Content or use it with any artificial intelligence model or tool. Printed by Roberto lacovelli on 6/21/2025 10:38:18 AM. Copyright © 2025 National Comprehensive Cancer Network, Inc. All Rights Reserved.

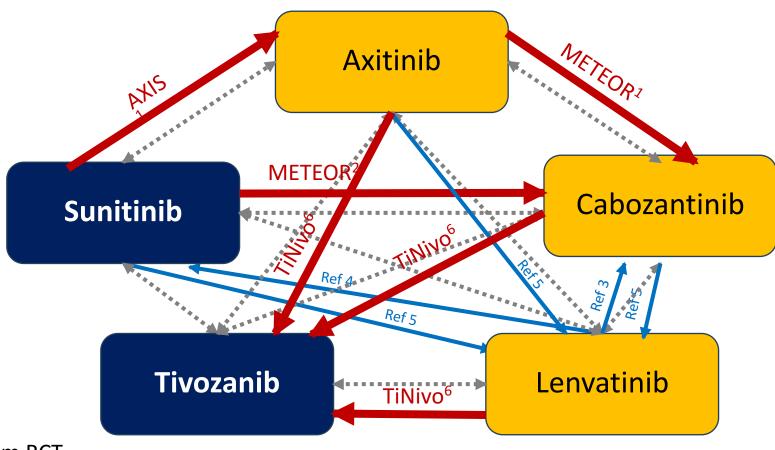
NCCN Guidelines Version 3.2025 Kidney Cancer


NCCN Guidelines Index
Table of Contents
Discussion


PRINCIPLES OF SYSTEMIC THERAPY FOR STAGE IV OR RELAPSED DISEASE

SUBSEQUENT THERAPY FOR CLEAR CELL HISTOLOGY (IN ALPHABETICAL ORDER BY CATEGORY)							
Immuno-oncology (IO) Therapy History Status	Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances				
IO Therapy Naïve	• None	 Axitinib + pembrolizumab^b Cabozantinib Cabozantinib + nivolumab^{b,c} Everolimus + lenvatinib Ipilimumab + nivolumab^{b,d} Lenvatinib + pembrolizumab^b Nivolumab^{b,c} 	 Axitinib Everolimus Pazopanib Sunitinib Tivozanib^f Belzutifan (category 2B) Bevacizumab^g (category 2B) Axitinib + avelumab^g (category 3) 				
Prior IO Therapy	• None	 Axitinib Belzutifane Cabozantinib Everolimus + lenvatinib Tivozanib[†] 	 Axitinib + pembrolizumab^b Cabozantinib + nivolumab^{b,c} Everolimus Ipilimumab + nivolumab^{b,d} Lenvatinib + pembrolizumab^b Pazopanib Sunitinib Bevacizumab^g (category 2B) Axitinib + avelumab^b (category 3) 				

Possibilities in clinical practice

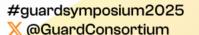




Evidence supported possibilities

- . Rini B, et al. Lancet. 2011;378:1931-9.
- 2. Choueiri TK, et al. N Engl J Med 2015;373:1814-182.
- B. Procopio G, et al. Tumori. 2023;109:129-137.
- 4. Grande E, et al. ESMO Open. 2022;7:100463.
- 5. Lee CH, et al. Lancet Oncol. 2021;22:946-958.
- Choueiri TK, et al. Lancet. 2024;404:1309-1320.

- 7. Rini B, et al. Lancet Oncol. 2020;21:95-104.
- Some other retrospective studies:
- 1. Auvray M, et al. Eur J Cancer 2019;108:33–40;
- 2. Shah AY, et al. Eur J Cancer 2019;114:67–75;
- 3. Wiele AJ, et al. The Oncologist 2021;26:1–7;
- Cerbone L. et al. Clin Genitourin Cancer. 2022:20:80-87.



Studies supporting cabo as "standard" 2nd

	BREAKPOINT ¹	CANTATA ²	CONTACT-03 ³
Phase	2	3	3
Patients	31	221 vs. 223	263 vs. 259
Study arms	cabo	Cabo+CB839 vs. cabo+P	Cabo+Atezo vs. cabo
IMDC*(%)	17 / 53 / 30	17 / 67 / 16	19 / 65 / 16
Prior IO (%) *experimental arm only	100	62 vs. 62	100 vs. 100
IO-IO IO-TKI	63 26 [§]	29 vs. 29 NA vs. NA	31 vs. 27 14 vs. 11*
PFS median (mos) HR (95%CI)	8.3	9.2 vs. 9.3 HR: 0.94 (0.74 – 1.21)	10.6 vs. 10.8 HR: 1.03 (0.83 – 1.28)
OS median (mos) HR (95%CI)	13.8	22.2 vs. 24.8 HR: NA	25.7 vs. NE HR: 0.94 (0.70 – 1.27)
ORR (%)	38	31 vs. 28	41 vs. 41

Cabozantinib achieved a median PFS of 9-10 months and ORR of 30-40%

§Axi-avelumab 3%; Lenva-pembro 23%; * Only Axi-pembro.

^{1.} Procopio G, et al. Tumori. 2023;109:129-137.

^{2.} Tannir NM, et al. JAMA Oncol. 2022;8:1411-1418.

^{3.} Pal S, et al. Lancet. 2023;402(10397):185-195.

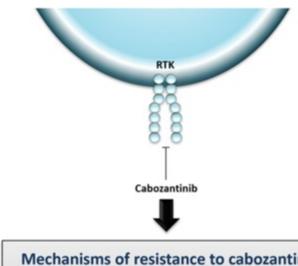
Why cabozantinib is so active?

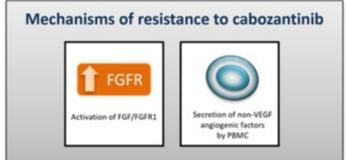
IC50 on VEGFR can explain main activity of TKIs:

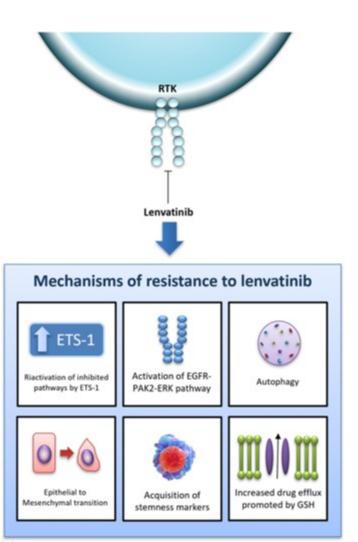
	Sorafenib	Sunitinib	Pazopanib	Axitinib	Tivozanib	Cabozantinib	Lenvatinib	Zanzalintinib
VEGFR2 IC50 (nM) ¹	90	80	30	0.20	6.5	0.035	4.0	1.6
Initial dose (mg)	800	50	800	10	1.5	60/40	20	100

There is evidence in clinical practice supporting sequencing of TKIs by IC50:

- Axitinib works well after sunitinib (AXIS²)
- Cabozantinib works well after sunitinib (METEOR³), and better to sunitinib (CABOSUN⁴)


^{2.} Rini B, et al. Lancet. 2011;378:1931-9.




^{3.} Choueiri TK, et al. N Engl J Med 2015;373:1814-182

^{4.} Choueiri TK, et al. Eur J Cancer. 2018:94:115-125.

Mechanism of resistance after lenv vs. cabo:

Can cabo works after len?

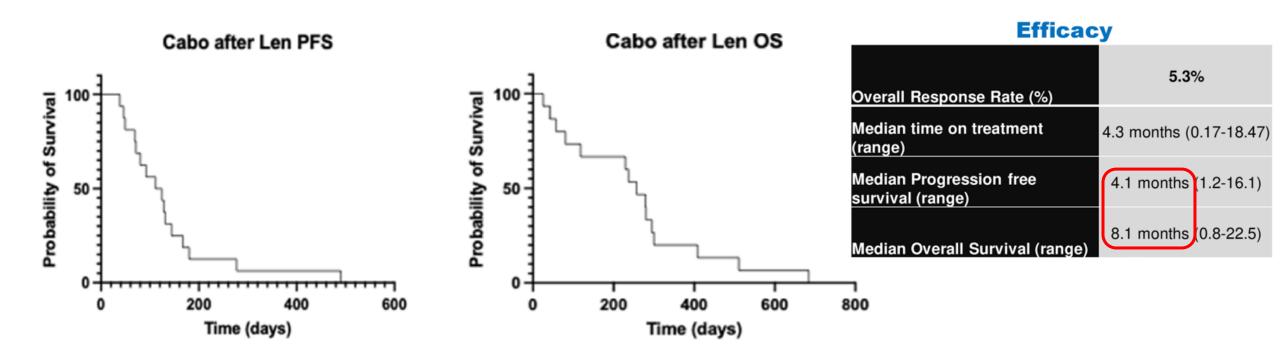
67 yo female; ECOG=0, IMDC=1

22-JAN-2024 CT: see image on T10 + adrenal gland (13 mm)

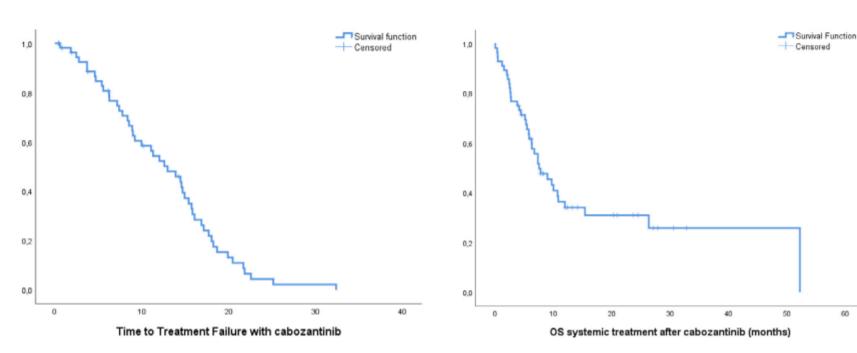
12-FEB-2024 Starts Lenvatinib + Pembrolizumab x 4

27-MAY-2024 CT: increase of the adrenal lesion (30 mm) + new pancreatic lesion (5 mm). Stable the bone lesion.

27-MAY-2024 Starts Cabozantinib 60 mg...


11-JUN-2025 CT: CR on pancreas; PR on adrenal gland (8mm); SD on T10.

YES, Cabo worked well!


What happened after PD to leva when treated with cabo?

Single center retrospective study of 22 pts with aRCC who received CABO after LEN+PEM

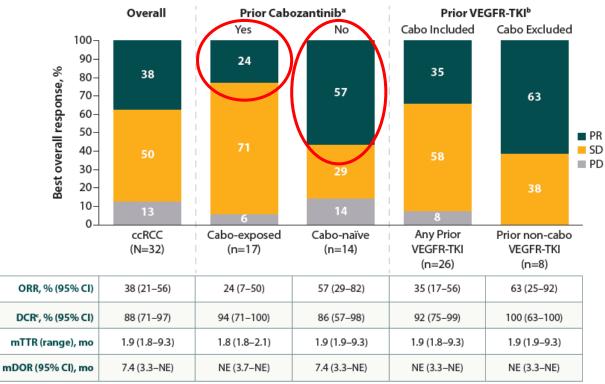
What happened after PD to cabo?

Failure and OS were 2.8 months and 7.7 months, respectively.

No difference in either TTF or OS among patients treated with cabozantinib for less than 6 months versus more than 6 months

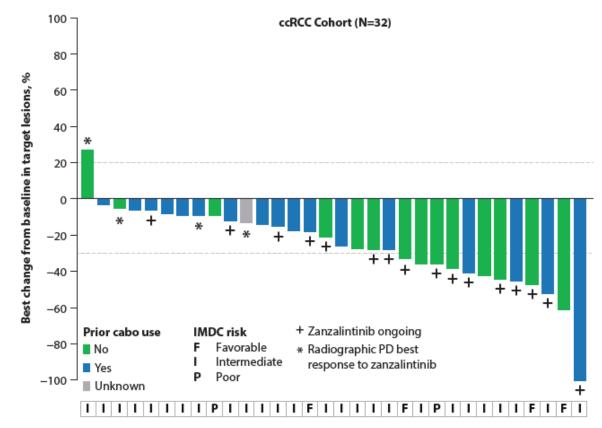
	Overall (n $=$ 56) Axitinib (n $=$ 18)		ICI (n = 18)	Everolimus (n = 16)	Others $(n = 4)$
TTF	2.8 mo (95% CI 1.9-3.7)	5.7 mo (95% CI 0.4-11.0)	2.5 mo (95% CI 1.6-3-3)	2.3 mo (95% CI 2.1-2.4)	
0S	7,7 mo (95%Cl 4,4-10.8)	9.7 mo (95% CI: 2.1-17.9)	6.3 mo (95%CI: 1.9-10.8)	7.4 mo (95% CI: 6.2-8.5)	4 mo (95%CI: 1.5-6.5)
PR=ORR	4 (7.1%)	2 (11.1%)	2 (11.1%)	0 (0%)	0 (0%)
SD	18 (32.1%)	6 (33.3%)	4 (22.2%)	4 (25%)	1 (25.0%)
PD	24(42.9%)	4 (22.2 %)	10 (55.5%)	10 (62.5%)	3 (75%)
Not Assessed	10 (17.9.2%)	6 (33.3%)	2 (11.1%)	2 (12.5%)	0 (0%)

How to do better?


- Looking at new TKIs
- Increasing 2L TKI efficacy by IO continuation
- Looking at new mechanisms of action (HIF2 α inhibitors)

Can we improve TKIs and response after

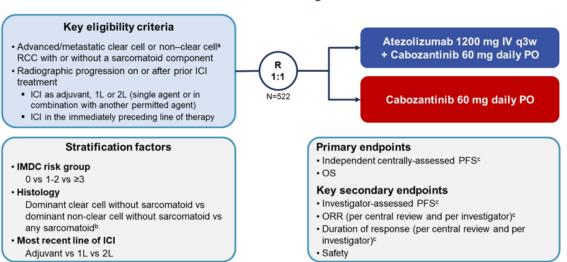
ZANZALINTINIB post TKI in STELLAR-01 study¹:


A. Tumor Response per RECIST v1.1 by Investigator

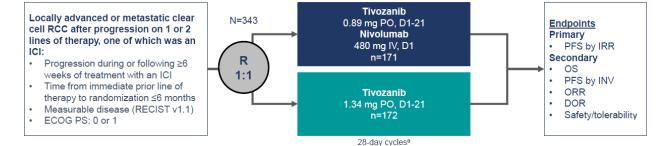
Prior cabozantinib exposure was unknown for one patient. These subgroups are not mutually exclusive. CDCR is defined as proportion of patients with a best overall response of confirmed CR/PR or any single best response of SD.

Zanzalintinib (XL092) is an orally active, ATP-competitive inhibitor of multiple receptor tyrosine kinases (RTKs) including MET, VEGFR2, AXL and MER.

B. Best Percent Change From Baseline in Target Lesions per RECIST v1.1 by Investigator



What we know about IO-continuation?


CONTACT-03 & TINIVO-2:

Phase III CONTACT-03 study

50% progressed while on first line IO

TiNivo-2: Phase 3 Study Design

Stratification Factors

- IMDC risk category
- Prior therapy (ICI as most recent therapy or not)

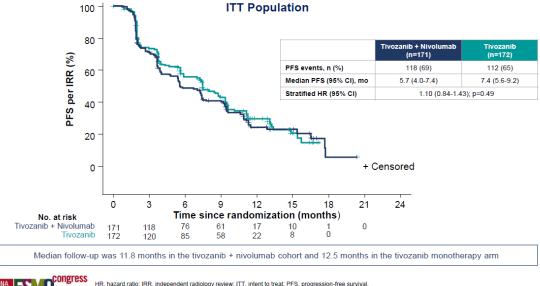
Statistical Analysis

- 220 PFS events, statistically powered to detected an improvement of 4 months in PFS (HR=0.67)
- · Stratified log-rank test with a two-sided 5% significance level

Key Considerations

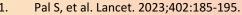

- Reduced dose of tivozanib in combination arm was agreed with regulatory authorities due to potential risk of higher rate of grade 3/4 hypertension
- Prior therapy (ICI as most recent therapy or not)
 - Test if ICI break impacts outcome (to resensitize the immune system to ICI therapy)

71% progressed while on IO 65% had just 1 previous Tx

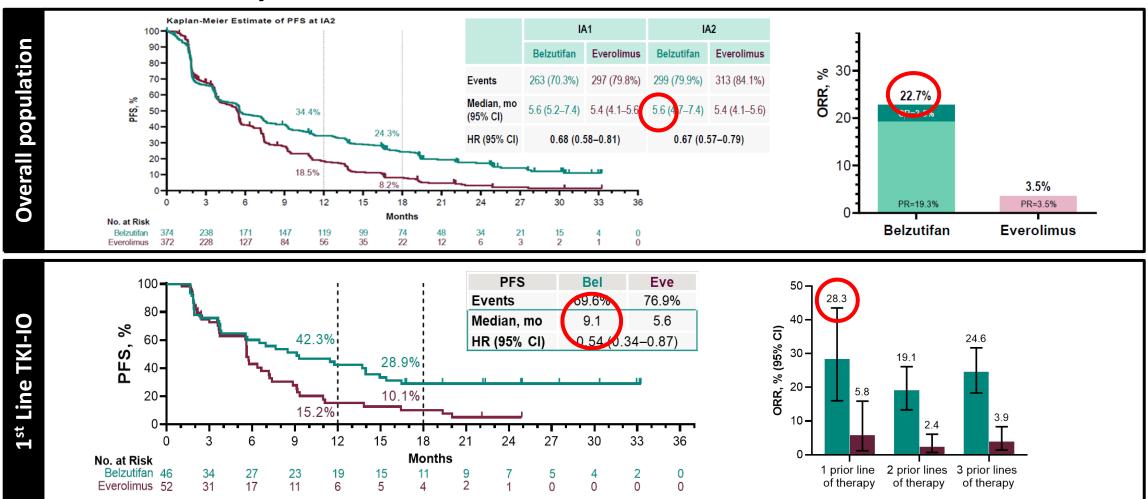


What we know about IO-continuation?


CONTACT-03 & TINIVO-2:



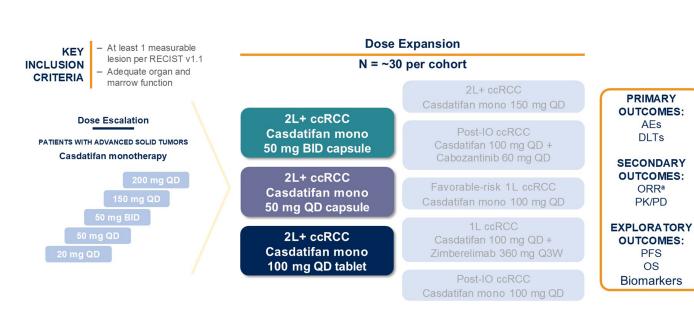
Both studies reported no benefit for continuing IO after progression to previous IOcombo



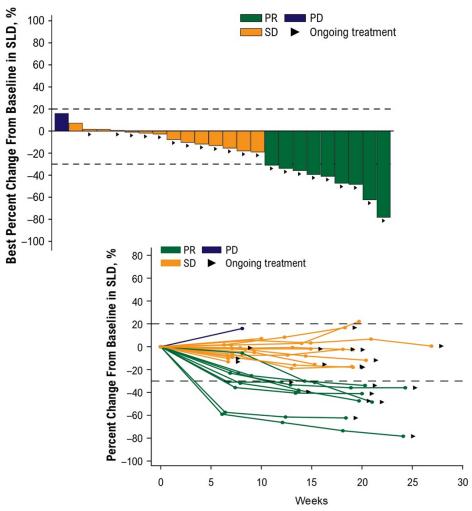
Choueiri TK, et al. Lancet. 2024;404:1309-1320.

Belzutifan and other HIF2a inhibitors

LITESPARK-005 study:


Belzutifan and other HIF2α inhibitors

- Despite the better outcome when used as second line, I am not sure belzutifan can work better than cabozantinib in 2 line (personal view).
- Belzutifan can be a good choice after cabo-nivo.
- Is the sequence of len-pemb → cabo better than cabo-nivo → belzutifan?
 NO DATA!



Belzutifan and other HIF2a inhibitors

Casdatifan the newest among the HIF inhibitors:

Belzutifan and other HIF2a inhibitors

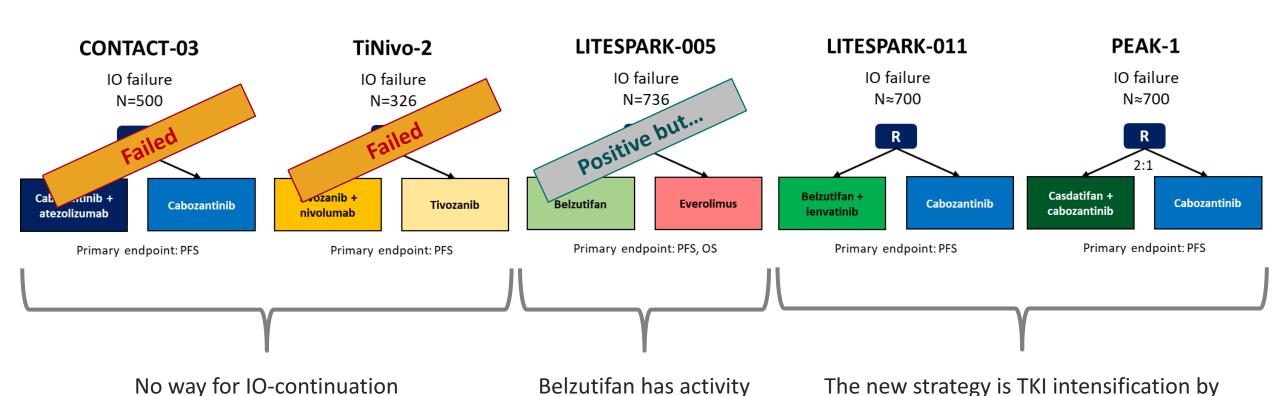
Pharmacological and Efficacy Characteristics of HIF-2α Inhibitors

Agent	t1/2	Maximum EPO Suppression	Phase	Dosing	N	ORR (%)	PD (%)	Median PFS (months)	Dose for Expansion
Belzutifan (MK-6482) ^{1,2}	14 h	~60% at 120 mg	3	120 mg QD	746	23%	34%	5.6	120 mg QD
Casdatifan (AB521)³	24 h	~82% at 100 mg	1	100 mg QD	27	33%	15%	Not reached	100 mg QD
NKT2152 ⁴	38 d	~72% at higher dose levels	1	Variable	100	20%	28%	7.4	Not specified
DFF332 ⁵	~85 d	Variable*	1	Not established	40	5%	Not specified	Not specified	Discontinued

EPO=Erythropoietin; ORR=Objective response rate; PD=Progressive disease; PFS=Progression-free survival; h=Hours; D=Days; QD=Once daily.

¹Choueiri et al, Nat Med, 2021; ²Choueiri et al, NEJM, 2024; ³Choueiri et al, ASCO GU, 2025; ⁴Jonasch et al, ESMO, 2024; ⁵Pal et al, Clin Cancer Res, 2025.

PRESENTED BY: Rana R. McKay, MD, FASCO


Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Where we are, where are we going...

What we learnt and what is the future for second line treatment.

but less than expected

#guardsymposium2025
X @GuardConsortium

HIF2α inhibitor (in cabo naive!).

Limits of the available & future data

- Cabozantinib was the most used & recommended second line, but no evidence exists about second line TKI after cabozantinib-nivolumab in 1L.
- Lenvatinib was included lately in the clinical armamentarium and there are few evidence for cabozantinib activity after lenvatinib.
- LITESPARK-011 wont show what is the 2L outcome to the currently most used TKI-IO combos (i.e.: cabo-nivo & len-pem).
- PEAK-1 will probably support the role of cabo in 2L (alone or in combination).
- If cabozantinib can be highly recommended as second line, there are not algorithms
 to predict the possibility to receive 2L (50-60%).

Conclusions

- A new TKI is the most reasonable option for patients progressed after TKI-IO.
- Cabozantinib has the strongest data (PFS 9-10 months; ORR 30-40%).
- Two trials suggested no efficacy for IO continuation with TKI, but IO can be considered for patients who interrupt treatment for toxicity (better than a TKI?)
- New mechanism of action are urgently required, and HIF2 α -inhibitors partially respond to this need.
- Ongoing trials are evaluating the efficacy of TKI+HIF2 α inhibitor compared to TKI alone.
- New TKI are really welcomed but major "limit" seems to be the greatest activity of cabozantinib and lenvatinib in first line.

Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore

roberto.iacovelli@policlinicogemelli.it

¡Gracias!

