

INTERNATIONAL SYMPOSIUM

GU-Alliance for Research and Development

PRESENCIAL RETRANSMITIDO EN DIRECTO FACE-TO-FACE AND LIVE STREAMING

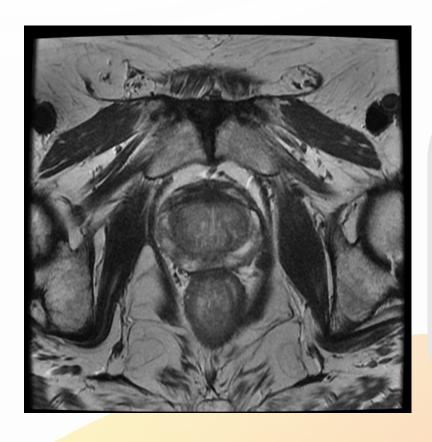
26-27 JUNIO 2025

Espacio Maldonado, Madrid

AI IN DIAGNOSTIC IMAGING

Almudena Fuster Matanzo, Medical Advisor (Quibim)

Diagnostic challenges in genitourinary tumors



Several persistent challenges still hinder accurate and consistent diagnosis of genitourinary tumors across clinical settings

- ✓ Benign vs malignant overlap → Risk of overdiagnosis/misclassification
- ✓ Limited biopsy sampling → Tumor heterogeneity often underrepresented
- ✓ Interpretation variability → Subjective reads in mpMRI & pathology
- ✓ Non-specific IHC markers → Cross-reactivity reduces specificity
- ✓ Artifacts & mimickers → Prostatitis or benign tissue may simulate cancer
- \checkmark Fragmented data sources \rightarrow Imaging, pathology, and clinical data rarely integrated

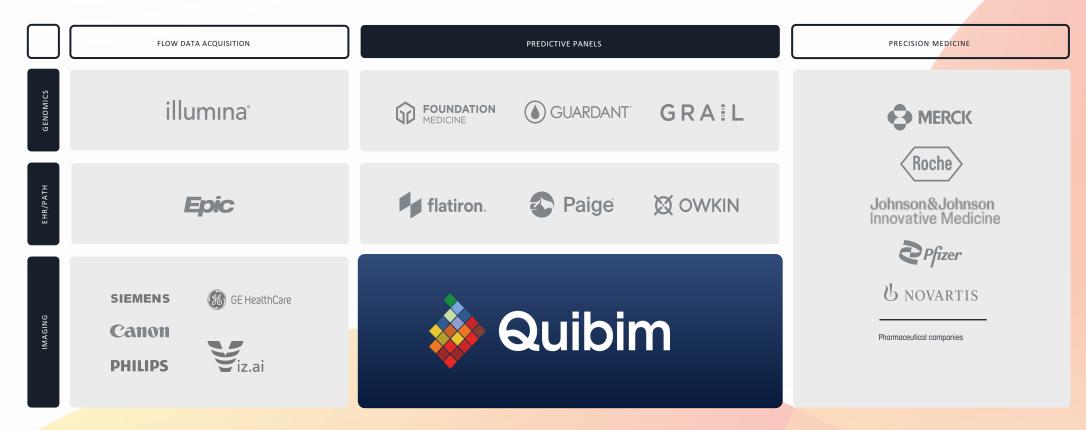
Applications of Al in urologic oncology

Tumor type	Al applications in medical imaging				
	- Interpretation of multiparametric MRI (mpMRI)				
	- Improved PI-RADS classification				
Prostate	- Gleason score prediction				
	- Assessment of surgical margins				
	- Detection of local recurrence during follow-up				
	- Al-powered automated cytology				
Bladder	- Preliminary models for muscle-invasive disease prediction (PET/MRI-based)				
	- Cystoscopy image analysis				
	- Differentiation of benign vs. malignant renal masses (CT-based)				
Kidney	- Histological subtyping (e.g., clear cell vs. papillary RCC)				
	- Tumour aggressiveness prediction				

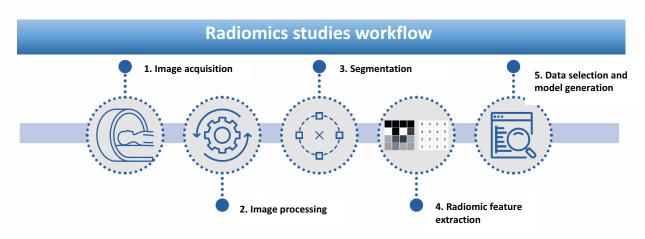
From diagnosis to risk stratification, Al-powered tools are emerging across key imaging modalities such as mpMRI, CT and PET

Medical imaging: a missing opportunity?

Every day, 10 million medical images are generated globally — yet less than 0.1% contribute to clinical research or Al development



Radiomics: extracting clinical value from medical imaging



What is radiomics?

Science that enables the extraction of quantitative data from medical imaging to generate clinically useful biomarkers

Clinical applications

- Non-invasive tumor and molecular classification
- Prediction of response to systemic therapies
- Anticipation of treatment-related toxicities
- Risk assessment of recurrence or progression

- Survival prognosis
- Support for clinical decision-making and treatment personalization

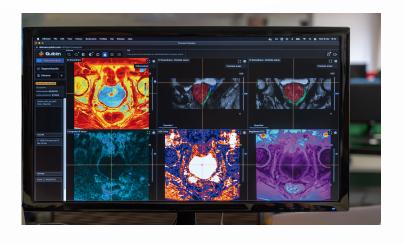
Key challenges for clinical application of radiomics

- Standardization of methods and workflow
- Data quality and heterogeneity
- Need for external and prospective validation

- Interpretability and the "black box" problem
- Multidisciplinary collaboration and clinical integration
- Regulatory, ethical, and legal issues
- Biological and clinical relevance

TRANSFORMING IMAGES INTO ACTIONABLE PREDICTIONS

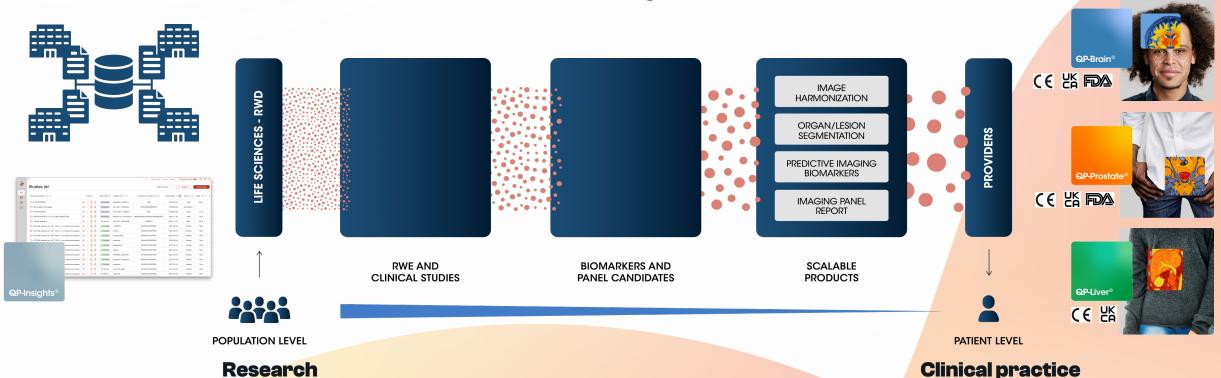
QUIBIM AT A GLANCE



4	TOP-20 BIOPHARMA WORK WITH US			
9	FDA / CE / UKCA CLEARANCES			
90+	EMPLOYEES Great Place To Work			
170+	SITES USING QUIBIM			
1000+	CLINICIAS USING OUR PLATFORM			
100M+	DE-IDENTIFIED MEDICAL IMAGES			
150k+	DE-IDENTIFIED ONCOLOGIC PATIENTS			
350+	SCIENTIFIC PUBLICATIONS			
ISO 27001	CERTICIONI			
ISO 13485	CERTIFICATION			
HIPAA/GDPR	COMPLIANCE			

How do we work?

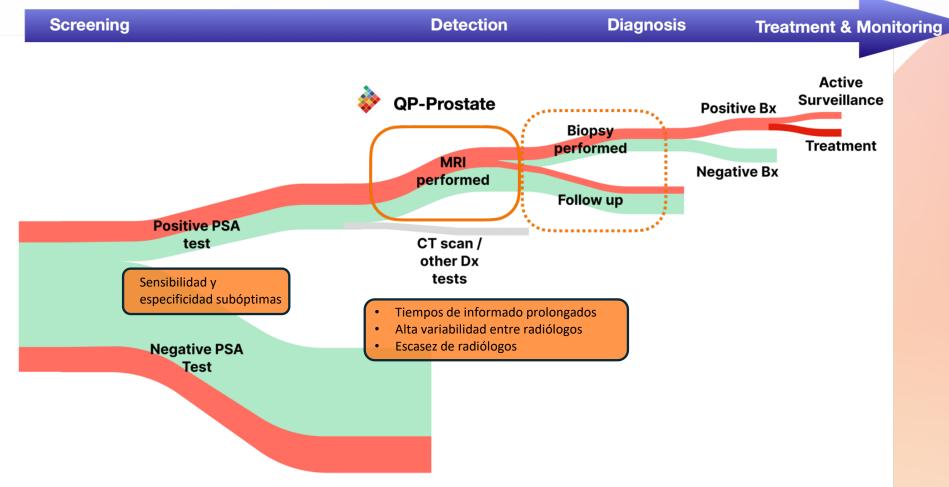
Quibim covers the use of imaging from population to patient, translating research into clinical practice



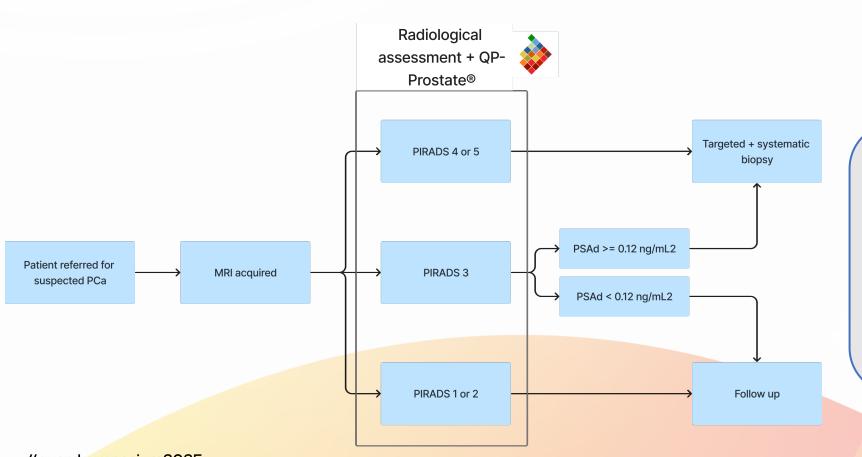
#guardsymposium2025 X @GuardConsortium

QP-PROSTATE®

Prostate cancer pathway



How can Al support the clinical pathway of prostate cancer?



- > Increased diagnostic accuracy
- > Increased consistency across radiologist reporting
- > More efficient workflows
- Better patient outcomes

#guardsymposium2025
X @GuardConsortium

QP-Prostate[®]: Precision and efficiency in prostate MRI interpretation

Quality Check

Automatic QC against PI-RADSv2.1 guidelines

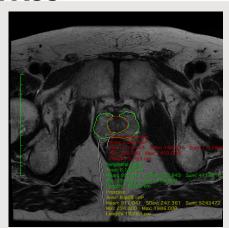
Prostate Segmentation

Automatic segmentation of PZ, TZ and SV

Prostate volume and fusion biopsy planning

PACS integration

Seamless integration, no need for radiologist to upload studies, results available in PACS

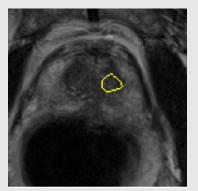


csPCa lesion detection

Automatic lesion detection and risk classification (High and Moderate probability)

Al model trained on systematic + targeted biopsy data

Outputs shown as lesion contour or bounding box with summary PDF report



USE CASES

Article

Prostate Region-Wise Imaging Biomarker Profiles for Risk Stratification and Biochemical Recurrence Prediction

Ángel Sánchez Iglesias ¹, Virginia Morillo Macías ¹, Alfonso Picó Peris ², Almudena Fuster-Matanzo ², Anna Nogué Infante ², Rodrigo Muelas Soria ¹, Fuensanta Bellvís Bataller ², Marcos Domingo Pomar ², Carlos Casillas Meléndez ³, Raúl Yébana Huertas ² and Carlos Ferrer Albiach ¹,*

OBJECTIVE

Identify imaging biomarker profiles (perfusion, diffusion, and radiomics<mark>) in MRI to predict</mark>
10-year biochemical recurrence and assess their predictive value

METHODS

- 128 patients with localized prostate cancer who had received neoadjuvant androgen deprivation and radiotherapy
- Automatic prostate segmentation using QP-Prostate

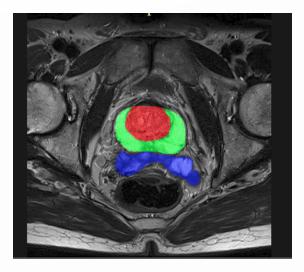
Radiomics enables identification of regional profiles associated with risk of BCR

- Patients experiencing BCR consistently showed:
 - Higher textural heterogeneity
 - √ Greater structural complexity
 - ✓ Coarser textures and therefore, less fine detail
- Smaller prostates, especially in the peripheral zone and seminal vesicles, were associated with higher risk of BCR
- Low ADC values in the central, transitional, and peripheral zones indicated higher tumor cellularity and worse prognosis

	Group	Meaning	CZ + TZ	PZ	Seminal vesicles	Whole prostate
Textura analysis					Vesicies	prostate
10percentile			_	_	0.0161	-
Median	Intensity	Reflejan la señal media o distribución de	_	_	0.0031	_
Skewness		intensidades dentro del tumor, relacionada con	_	_	0.0036	0.0118
Flatness		celularidad, necrosis o densidad tumoral	_	0.030	-	-
Major Axis Length			_	0.002↓	0.0159	0.0057↓
Minor Axis Length	Shape and texture	Capturan las dimensiones y geometría del tumor	-	-	0.0261	
Maximum 2D Diameter			-	-	0.0031	
Maximum 3D Diameter			-	0.024↓	-	-
Surface Volume Ratio			-	-	0.0141	-
GLCM_Inverse Difference			-	-	-	0.0079
GLCM_IMC1			-	-	0.0079	-
GLCM_IMC2	Texture	Captura relaciones espaciales entre	-	-	0.0334↓	-
GLCM Cluster Shade		intensidades; mide homogeneidad, complejidad	_	_	0.0166	_
GLCM Inverse Variance		y organización	_	_	0.0460	_
GLCM_Maximum Probability			_	_	0.0004	-
GLSZM_LAE	Texture	Miden distribución y tamaño de zonas homogéneas.	0.0249↑	-	-	0.0109
GLSZM_LAHGLE			-	_	0.0048	-
GLSZM_LALGLE			-	_	-	0.0025
GLRLM_SRE	Texture	Mide cuántas estructuras pequeñas y homogéneas hay en la imagen; valores altos indican textura fina	0.0311 🗸		-	-
GLDM_DE	Texture	Mide la relación entre un píxel y el entorno	-	-	0.0086	-
GLDM_LDLGLE		inmediato	_	-	0.0001	0.0047
		Evalúa la fuerza del contraste local entre un píxo	el y su 🕒	-	0.0009 🔨	-
NGTDM_Strength	Texture	entorno. Altos valores indican bordes o estructuro definidas.	as bien			
Diffusion biomarkers						
ADC mean		-		0.0292	_	_

ADC = apparent diffusion coefficient; CZ = Central Zone; DE = dependence entropy; GLCM = Gray-Level Co-Occurrence Matrix; GLDM = Gray Level Dependence Matrix; GLRLM = Run Length Matrix; GLSZM = Gray Level Size Zone; IMC = informational measure of correlation; LAE = Large Area Emphasis; LAHGLE = Large Area Low Gray Level Emphasis; arge Dependence Low Gray Level Emphasis; NGTDM = Neighborhood Gray Tone Difference Matrix; PZ = Peripheral Zone; SRE = short run emphasis; TZ = Transitional Zone; 2D = pnal; 3D = 3-dimensional.

Prostate region-wise radiomic models predict **BCR**

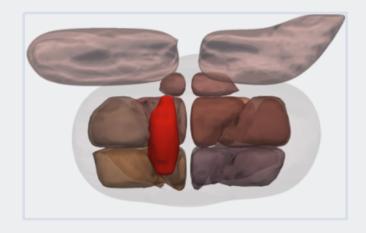


- TZ+CZ
- PZ
- Whole prostate

- Radiomics-based models showed good performance (AUC > 0.725 in most cases)
- Regional prostate analysis outperformed global analysis in predictive accuracy
- Adding clinical variables improved performance (AUC up to 0.877)
- The peripheral zone (PZ) yielded the best predictive results

Regional radiomic feature analysis retains greater predictive power than whole-gland analysis

Metastatic progression prediction in localized PCa



Context (ongoing)

Partner: Top-20 Biopharma

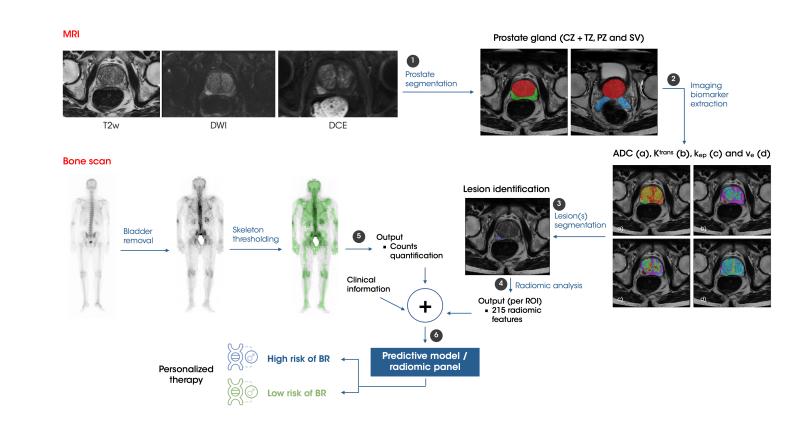
- Patients treated with curative intent
- +300 MRIs, PSMA PET/CTs and SPECTs + follow-up

→ Challenge

Can Quibim develop an Al model that analyzes baseline diagnostic images and predicts metastatic risk in patients with PCa?

→ Solution

An imaging-based ai model to predict metastatic progression by combining radiomic features and biomarkers extracted from MRI and/or PSMA PET/CT with quantified counts from bone scan analysis



Identify candidates for an approved drug for AxSpa

Context (Ongoing)

Partner: Top-20 Biopharma

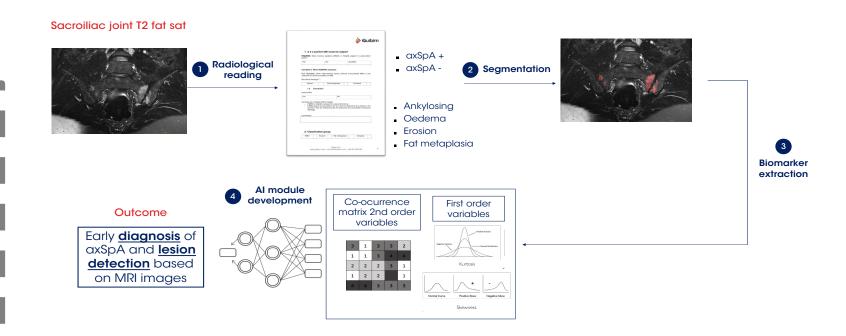
- Approved treatment for AxSpa
- Early diagnosis of disease to promote treatment
- Multi-centric ~1000 MRIs + final diagnosis

→ Challenge

- No single test or gold standard to diagnose AxSpa ightarrow variable prescribing
- Objective diagnosis would improve access to treatment
- Can Quibim develop and validate an MRI-based ai algorithm as a companion diagnostic (cdx)?

→ Solution

- Quibim is developing an ai-based tool to diagnose AxSpa through a cloud
- In the future, this tool could be offered alongside the drug to support rheumatologists in decision-making



THANK YOU!

