

INTERNATIONAL SYMPOSIUM

GU-Alliance for Research and Development

PRESENCIAL RETRANSMITIDO EN DIRECTO FACE-TO-FACE AND LIVE STREAMING

26-27 JUNIO 2025

Espacio Maldonado, Madrid

Talapro-2

¿A qué pacientes debemos testar? ¿Cuáles son candidatos a tratamiento?

David Lorente Estellés

Servicio de Oncología Médica

Instituto Valenciano de Oncología

Disclosures

- Employment: None
- Consultant or Advisory Role: Janssen, Astellas, MSD, Bayer
- Stock Ownership: None
- Research Funding: None
- Grant support: None
- Other (Speaking and travel grants): Janssen, Astellas, Pfizer, Ipsen, Bristol, Astra-Zeneca, Roche, MSD

TALAPRO-2. Who should we test? Who is the ideal candidate for treatment?

Who to test?

Do PARPi – NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?

What, where and when to test?

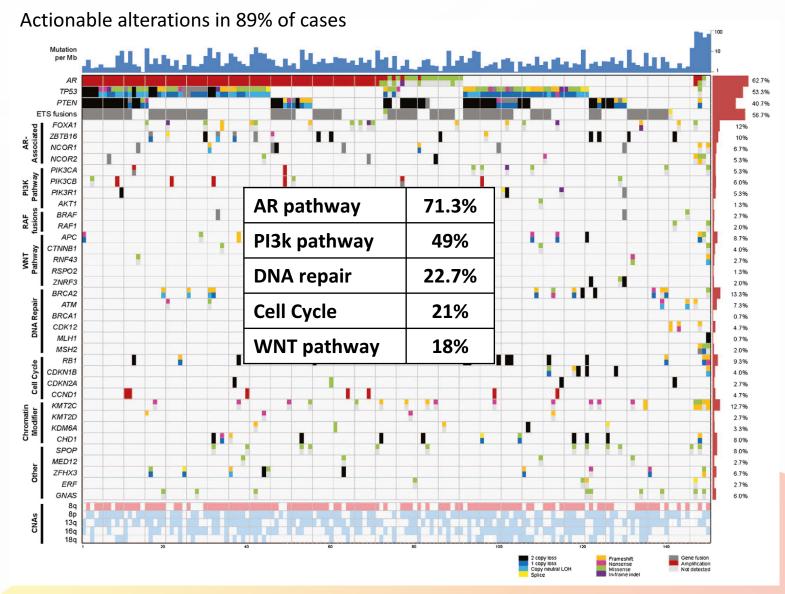
Who to test? Test everybody!!

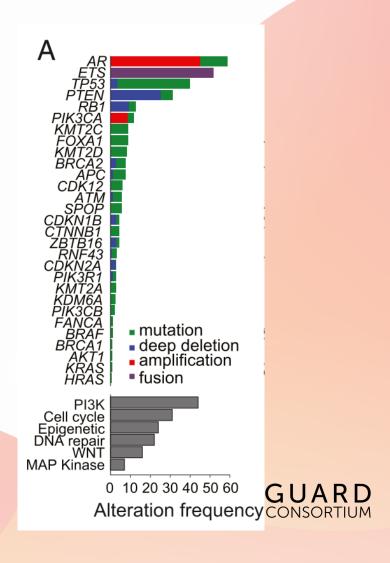
Testing has <u>prognostic</u> implications (outcome)

Testing has implications for the <u>family risk</u> of cancer Testing has predictive implications (treatment selection)

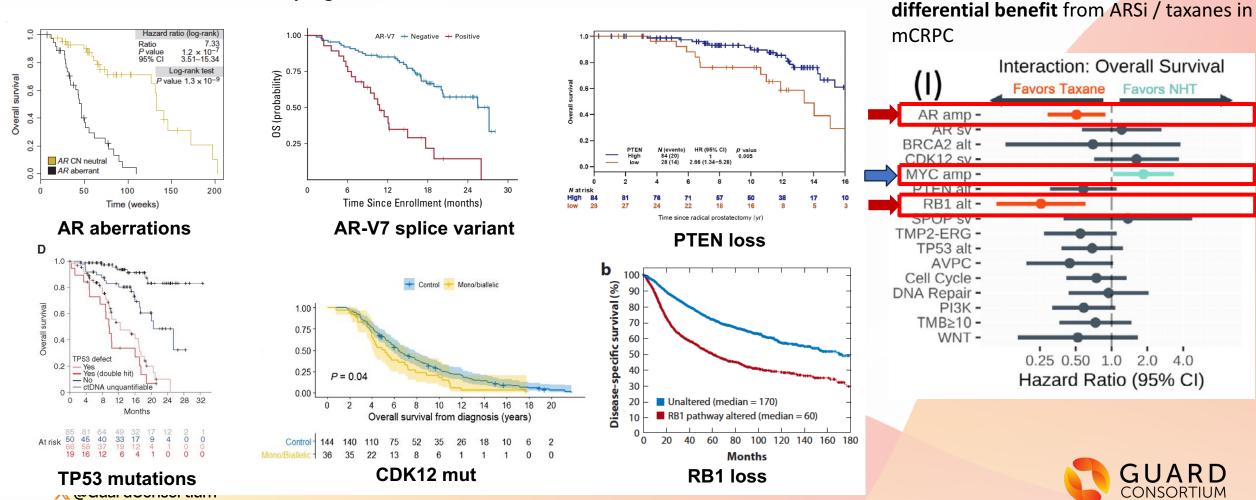
Do PARPi - NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?


The ideal candidate is the one that <u>reflects the clinical trial population</u> expected benefit is greater than anticipated tox<u>icity</u> (disease burden)

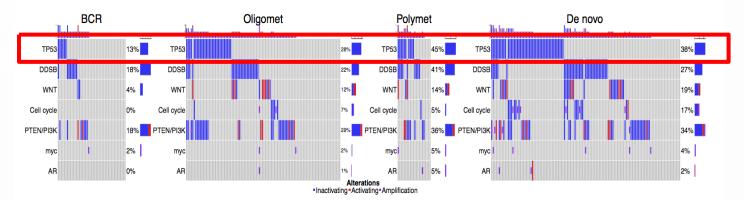

ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scar

What, where and when to test?

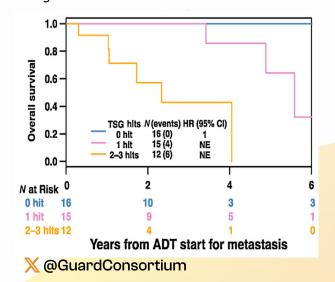

Molecular characterization in advanced prostate cancer

Clinical utility of genomic profiling in mCRPC

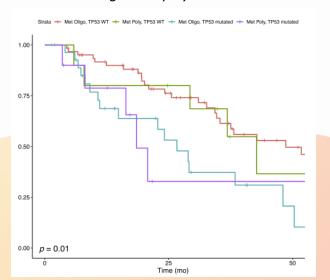
AR aberrations, loss of tumor suppressors (TP53, RB1, PTEN), DNA repair alterations... all **associated with adverse prognosis**



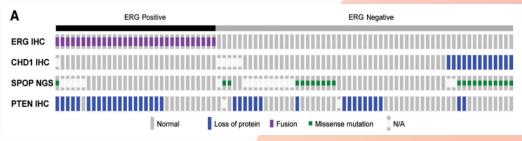
Some alterations could be associated with


Genomic alterations and prognosis in mHSPC

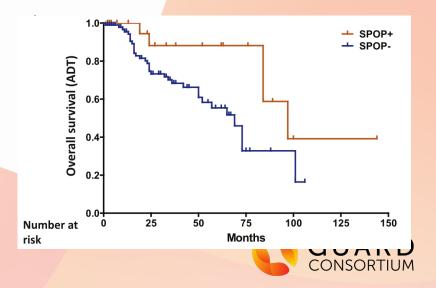
Loss of function of tumor supressors is associated with adverse prognosis


Increased TP53 alterations with higher volume of metastatic disease

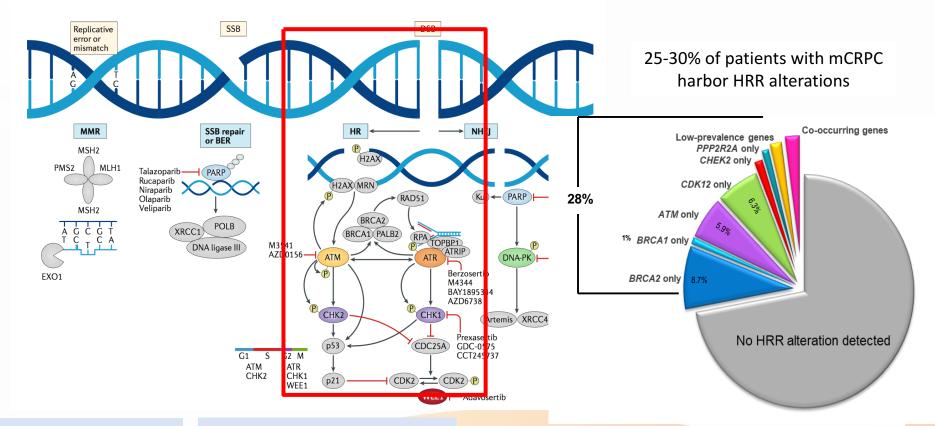
Mutations in the TP53, RB1 and PTEN suppressor genes associated with adverse outcome



TP53 mutations associated with adverse prognosis in both oligo- and polymetastatic disease



SPOP mutations associated with favorable prognosis


Most frequently mutated gene in prostate cancer Mutations in the MATH domain

SPOP mutation associated with higher response rate and time on abiraterone in mCRPC

DNA repair alterations in advanced prostate cancer

Mismatch Repair

Base Excision Repair (BER)

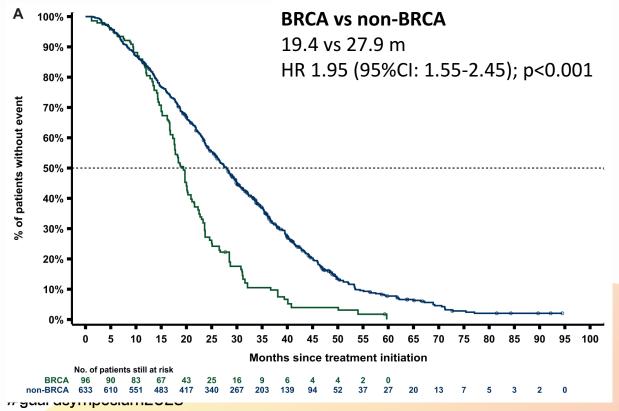
Non-homologous end-joining

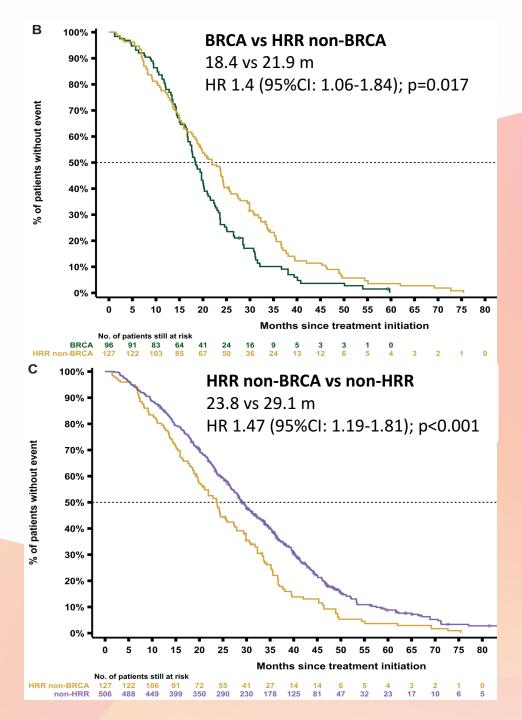
Homologous recombination (HR)

#guardsymposium2025

X@GuardC Yap et al. Nat Rev Oncol 2019. De Bono et al. N Eng J Med 2020. Olmos et al Ann Oncol 2024. Olmos et al Ann Oncol 2025.

BRCA genes are the most frequently mutated

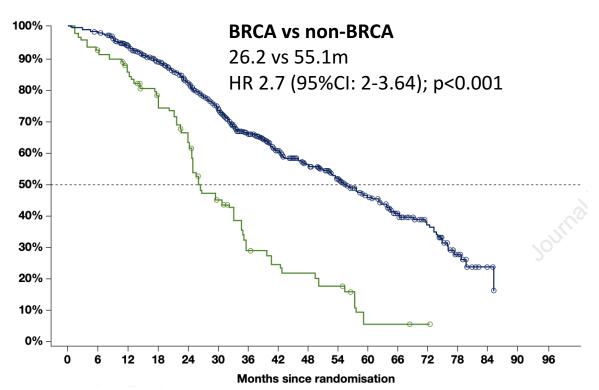

mCRPC	mHSPC		
8.4%	7.9%		
2.6%	1.1%		
10.7%	11.3%		
1.9%	1.6%		
2.1%	2%		
1.5%	3%		
5.2%	3.6%		
2.9%	2.9%		
0.5%	1.3%		
0.4%	1.1%		
0.7%	1.3%		
	8.4% 2.6% 10.7% 1.9% 2.1% 1.5% 5.2% 2.9% 0.5% 0.4%		

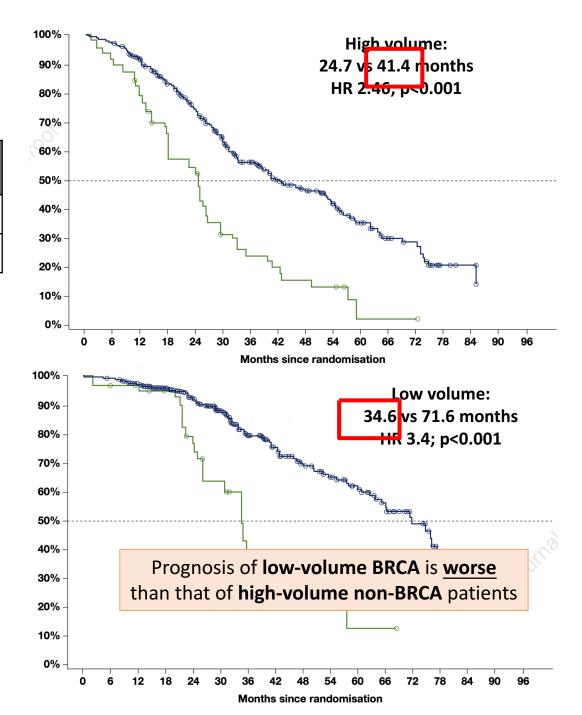

HRR alterations and prognosis The CAPTURE study - Cohort 1 (mCRPC)

N=729. mCRPC undergoing 1st L therapy. 1L ARSi (64.6%) 1L Taxanes (35.4%)

BRCA	Non-BRCA HRR	Non- HRR	
13.2%	17.4%	69.4%	

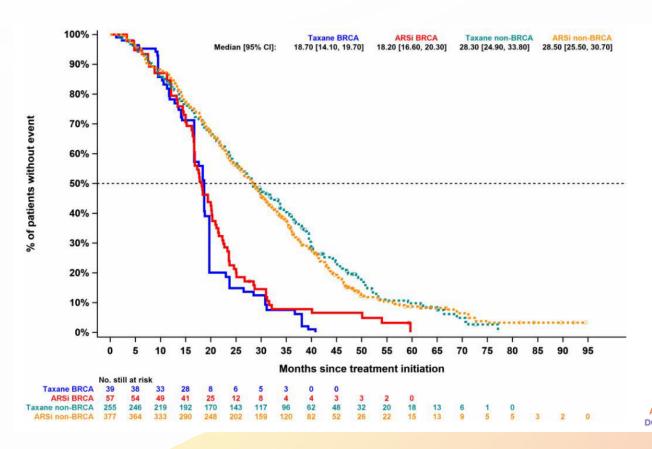
X @GuardConsortium
Olmos et al. Ann Oncol 2024

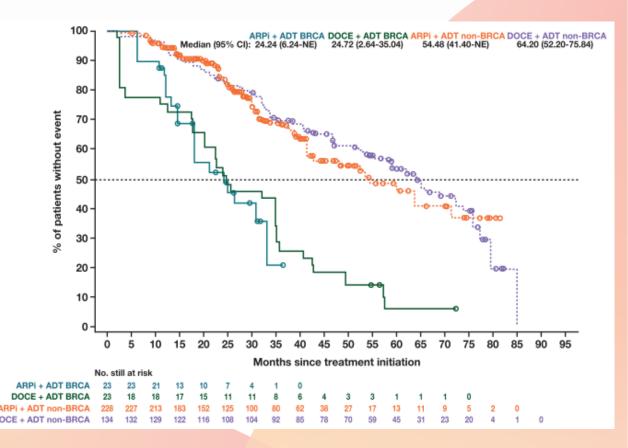



HRR alterations and prognosis The CAPTURE study - Cohort 2 (mHSPC)

The CAPTURE study

N=556. mHSPC patients. Hi Vol 55%. ADT alone (13%), ADT + ARSi (45%), ADT + Docetaxel (30%), ADT + ARSi + Docetaxel (11%)


	All pts	Hi Vol	Low Vol
BRCA	13.3%	13.7%	12.8%
HRR	28.4%	28.1%	28.8%



Conventional therapy is ineffective in BRCA mutants

mCRPC: no OS difference 1st line taxane vs ARSi

mHSPC: no OS difference ADT+ARSi vs ADT+Taxane

Non-BRCA HRR is a heterogeneous subgroup

Impact of **individual non-BRCA HRR alterations** on outcome in patients treated with ARSIs or taxanes as first-line therapy for mCRPC (CAPTURE Cohort 1)

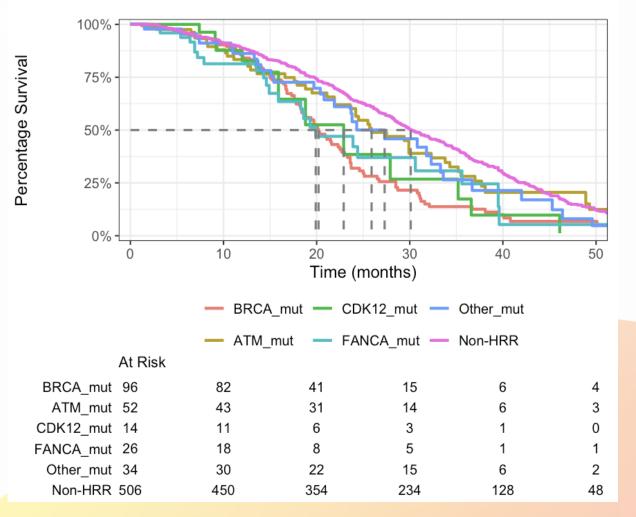


TABLE 1. PATIENT CHARACTERISTICS

		Non-HRR (N=506)	BRCA (N=96)	ATM (N=52)	CDK12 (N=14)	FANCA (N=26)	Other (N=34)
	<65	114 (23%)	16 (17%)	18 (35%)	5 (36%)	7 (27%)	5 (15%)
Age (yr)	65-75	201 (40%)	41 (43%)	20 (39%)	2 (14%)	11 (42%)	14 (41%)
***	>=75	191 (38%)	39 (41%)	14 (27%)	7 (50%)	8 (31%)	15 (44%)
Stage I	V at diagnosis	244 (48%)	41 (43%)	22 (42%)	5 (36%)	18 (69%)	13 (38%)
Albu	min < 4 g/dL	181 (36%)	46 (48%)	13 (25%)	5 (36%)	12 (46%)	14 (41%)
Α	LP≥ULN	237 (47%)	58 (60%)	35 (67%)	6 (43%)	15 (58%)	13 (38%)
H	lb ≤ 12.5	185 (37%)	40 (42%)	16 (31%)	6 (43%)	10 (39%)	11 (32%)
LI	DH ≥ ULN	225 (45%)	46 (48%)	31 (60%)	7 (50%)	14 (54%)	17 (50%)
PSA	> 50 ng/dL	180 (36%)	41 (43%)	23 (44%)	8 (57%)	13 (50%)	11 (32%)
ECOG	>=1	268 (53%)	52 (54%)	28 (54%)	8 (57%)	14 (54%)	16 (47%)
ECOG	0	238 (47%)	44 (46%)	24 (46%)	6 (43%)	12 (46%)	18 (53%)
Gleas	on Score >= 8	318 (63%)	63 (66%)	33 (64%)	11 (79%)	22 (85%)	15 (44%)
Bone metastases > 10 Visceral metastases Time to mCRPC ≥ median		86 (17%)	18 (19%)	8 (15%)	3 (21%)	9 (35%)	4 (12%)
		70 (14%)	9 (9%)	3 (6%)	5 (36%)	4 (15%)	6 (18%)
		268 (53%)	42 (44%)	20 (39%)	8 (57%)	8 (31%)	20 (59%)
1st line	Taxanes	200 (40%)	34 (35%)	25 (48%)	5 (36%)	13 (50%)	12 (35%)
therapy	ARSIs	306 (60%)	62 (65%)	28 (52%)	9 (64%)	13 (50%)	22 (65%)

TABLE 2. IMPACT OF NON-BRCA MUTATION STATUS ON OS AND RPFS (MULTIVARIABLE MODEL)

	Median (95%CI)	HR (95%CI) vs BRCA	HR (95%CI) vs non-HRR	
OVERALL SURVIVA	L			
Non-HRR	29.6 m (27.9-32.1)	-	-	
BRCA	18.4 m (16.7-20.2)	-	-	
ATM	24.2 m (17.9-29.4)	0.65 (0.43-0.97); p=0.035	1.25 (0.9-1.7); p=0.17	
CDK12	17.4 m (9.2-35.2)	1.38 (0.68-2.8); p=0.37	2.1 (1.2-3.6); p=0.015	
FANCA	FANCA 17.1 m (7.9-23.9)	0.97 (0.58-1.62); p=0.91	1.9 (1.2-2.9); p=0.003 1.3 (0.9-1.9); p=0.139	
Other	24 m (15-33)	0.66 (0.4-1); p=0.07		
RADIOGRAPHIC PR	ROGRESSION-FREE SURVIV	AL .		
Non-HRR	11 m (10.1-12)	-	-	
BRCA	7.1 m (6.2-8.5)	-	-	
ATM	7.7 m (6.4-10.3)	0.76 (0.5-1.2); p=0.194	1.37 (0.98-1.9); p=0.07	
CDK12	9.2 (3.1-12.2)	1.33 (0.6-2.9); p=0.48	1.54 (0.8-2.9); p=0.167	
FANCA	7.1 (3.6-11)	1.1 (0.64-1.8); p=0.77	1.9 (1.2-3); p=0.004	
Other	11 (7.3-15.2)	0.81 (0.5-1.3); p=0.386	1.4 (0.97-2.1); p=0.07	

Lorente et al. ESMO 2024

Who to test? Test everybody!!

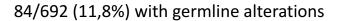
Testing has <u>prognostic</u> implications (outcome)
Testing has implications for the family risk of cancer

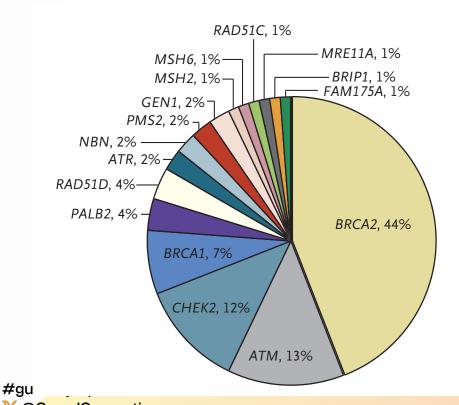
Testing has predictive implications (treatment selection)

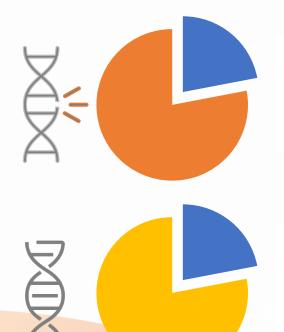
Do PARPi – NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?

The ideal candidate is the one that <u>reflects the clinical trial population</u> expected <u>benefit</u> is <u>greater than anticipated toxicity</u> (disease burden


ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scan


What, where and when to test?



Germline BRCA alterations

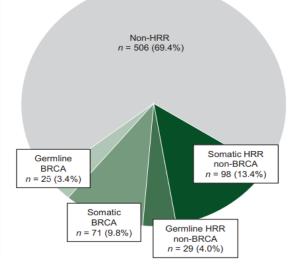
692 men with metastatic prostate cancer unselected for family history of cancer or age at diagnosis were assessed for mutations in 20 DNA repair genes

Among 72 men with germline DNA-repair mutations

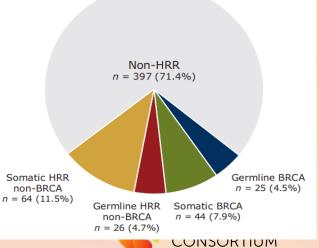
22% had a family history of PC

Among 537 men without germline DNA-repair mutations

22% had a family history of PC

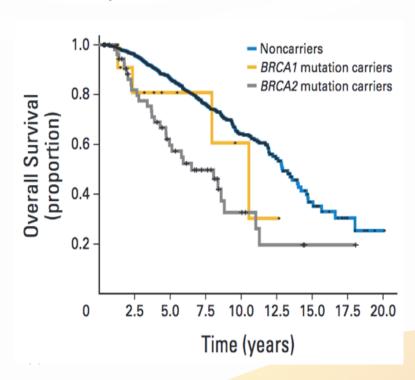


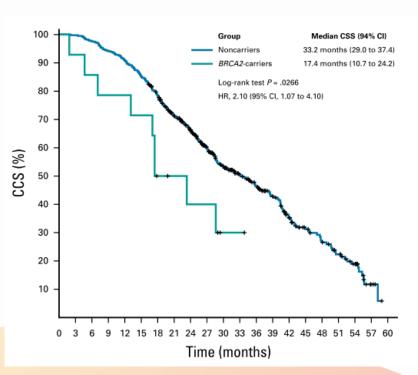
Germline alterations vary across populations


Metastatic prostate cancer (CAPTURE, spanish population)

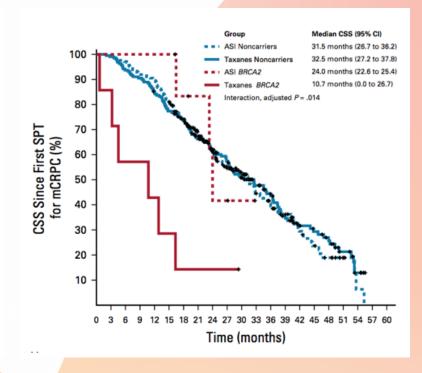
Gene	European Ancestry N=692	Spanish N=419	African- American N=2669	Chinese N=1836	LATAM N=379
ATM	1.6	1.9	0.97	1.04	0.8
ATR	0.3	0	-	0.29	0
BRCA1	0.9	0.9	1.41	0.21	0.3
BRCA2	5.3	3.3	2.8	4.3	0.8
BRIP1	0.14	0	0	0.06	0.5
CHEK2	1.4	0.5	0.48	0.17	1
MLH1	0	0	0	-	-
MSH2	0.14	0.2	0	0.45	-
MSH6	0.14	0	0	0.17	-
NBN	0.3	0	0	0.06	0
PALB2	0.4	0	1.1	0.67	0
PMS2	0.3	0	0.47	0.06	-
RAD51C	0.14	0	0.68	0.06	0
RAD51D	0.4	0	0	0.25	0

mCRPC	
BRCAg	3.4%
Non-BRCAg	4%


mHSPC	
BRCAg	4.5%
Non-BRCAg	4.7%


#guardsymposium2025
X@GuardConsortium

Germline BRCA mutations are associated with adverse prognosis


Localized prostate cancers

mCRPC

mCRPC: worse outcome in pts treated with taxanes

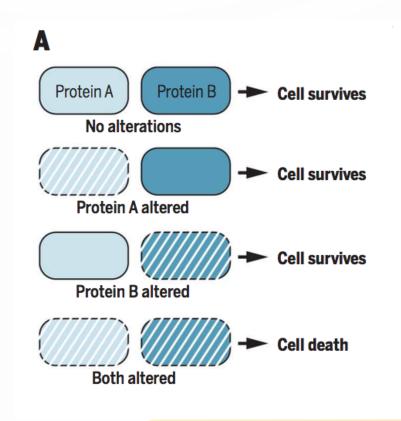
Who to test? Test everybody!!

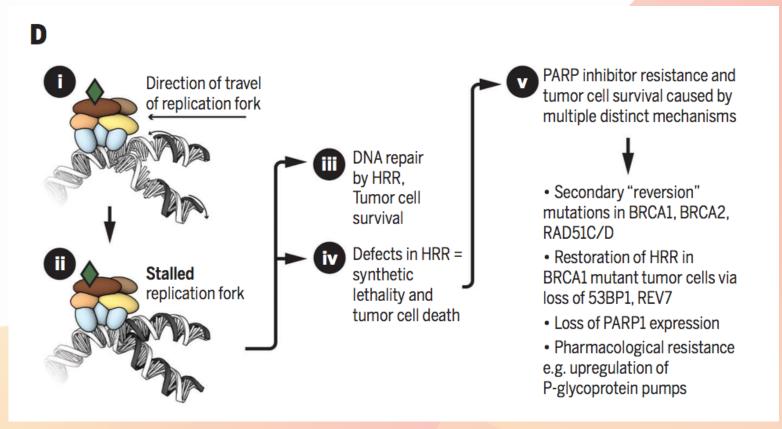
Testing has <u>prognostic</u> implications (outcome)
Testing has implications for the <u>family risk</u> of cancer
Testing has predictive implications (treatment selection)

Do PARPi - NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?

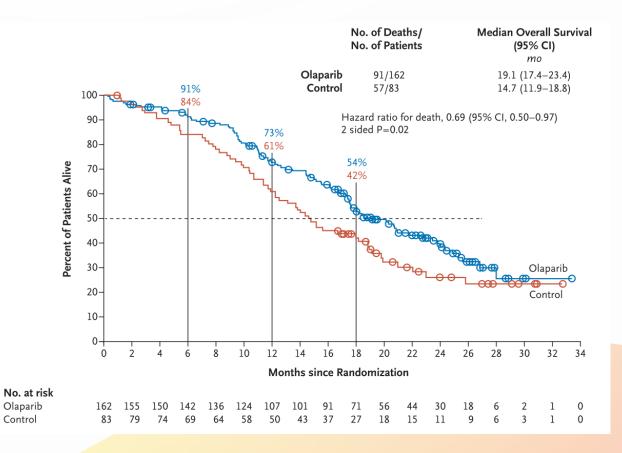
The ideal candidate is the one that <u>reflects the clinical trial population</u> expected benefit is greater than anticipated toxicity (disease burden


ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scar

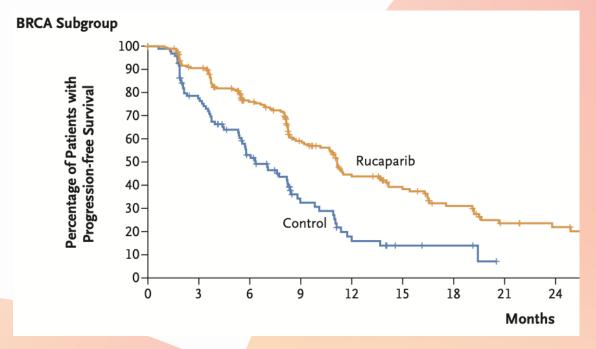

What, where and when to test?

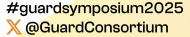
Patients with BRCA/HRR alterations are sensitive to PARPi

Synthetic letality



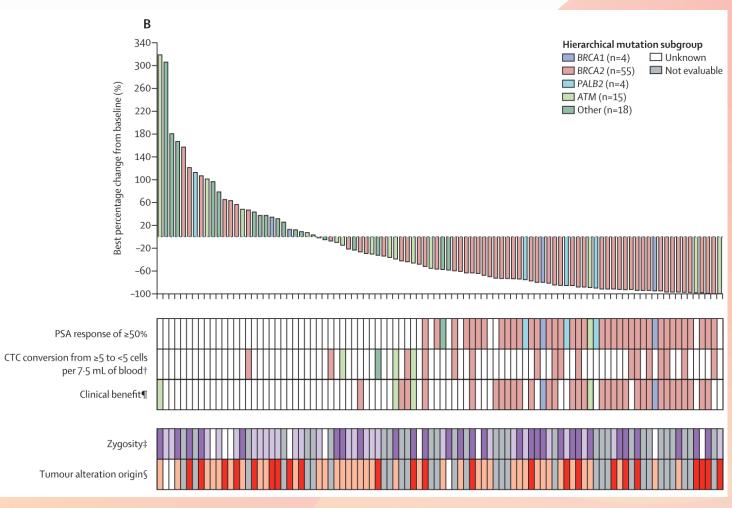
BRCA alterations are predictive biomarkers of PARPi efficacy


PROFOUND (randomized phase III):


Olaparib improves OS vs 2nd hormonal agent in BRCA/ATM pts

TRITON2 (randomized phase III):

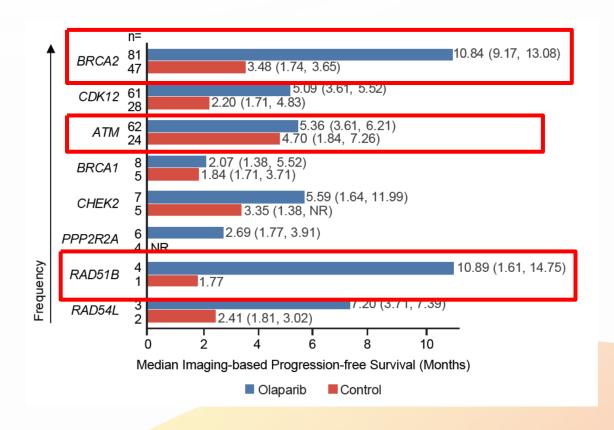
Rucaparib improves rPFS vs 2nd hormonal agent or Docetaxel in BRCA mutant pts

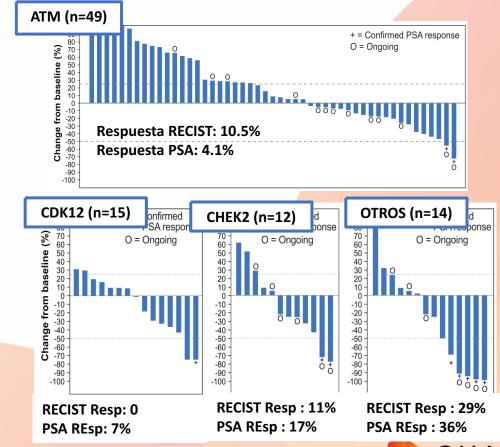


BRCA alterations are predictive biomarkers of PARPi efficacy

Antitumor activity in BRCA mutated patients of PARPi in monotherapy

	PSA-50 RR	RECIST	rPFS
Olaparib (PROFOUND)	61.7%	43.9%	9.8 m
Rucaparib (TRITON3)	55%	45%	11.2 m
Talazoparib (TALAPRO-1)	66%	46%	11.2 m
Niraparib (GALAHAD)	43%	34%	8.1 m


TALAPRO-1 trial: Talazoparib monotherapy 1 mg c/24h


#guardsymposium2025
X @GuardConsortium

Non-HRR is heterogeneous

PROFOUND: OS with different genomic alterations

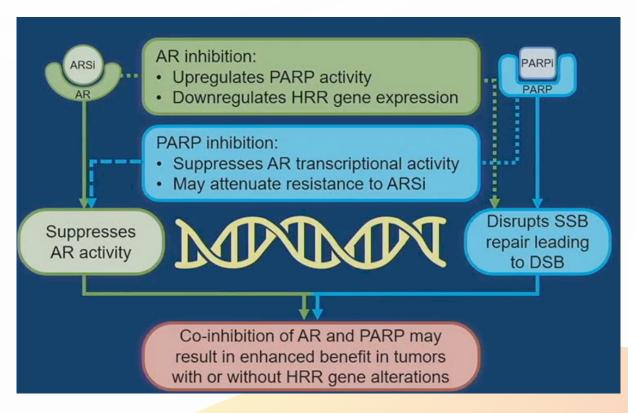
Antitumor activity of Rucaparib in the non-BRCA cohort of the TRITON2 trial

Who to test? Test everybody!!

Testing has <u>prognostic</u> implications (outcome)
Testing has implications for the <u>family risk</u> of cancer
Testing has predictive implications (treatment selection)

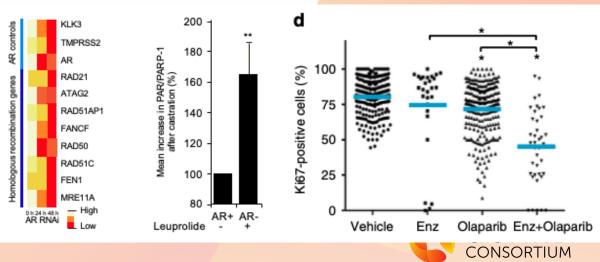
Do PARPi – NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?

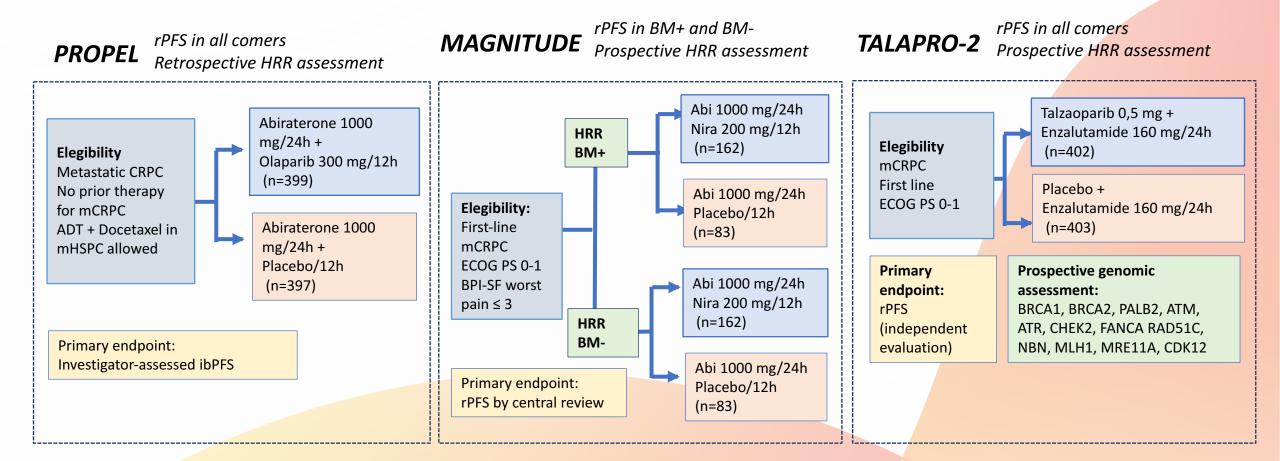

The ideal candidate is the one that <u>reflects the clinical trial population</u> expected <u>benefit</u> is <u>greater than anticipated tox</u>icity (disease burden

ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scan

What, where and when to test?



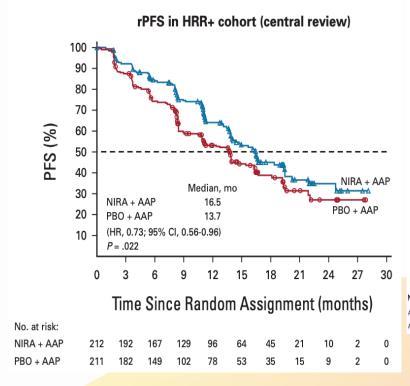
Do PARPi + ARSi doublets abrogate the need for testing?



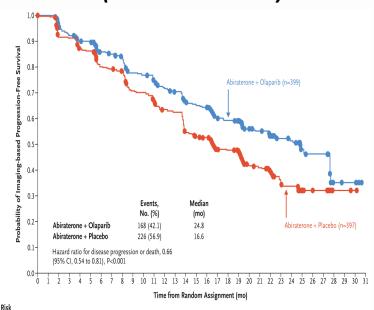
- ADT can inhibit homologous recombination
 Upregulation of DNA repair pathways dependent on PARP with androgen deprivation
- PARP-1 activity is critical for chromatin occupation by the androgen receptor

In vivo PARP inhibition is sufficient to supress AR activity

What is the evidence?

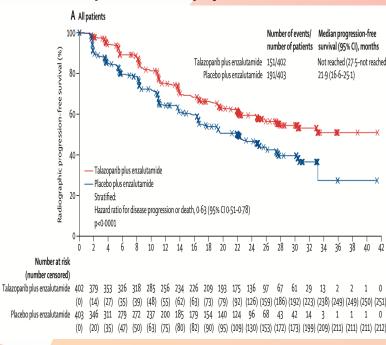


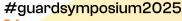
3 positive trials (primary endpoint)

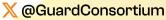

MAGNITUDE

All HRRm: rPFS HR 0.73 (95%CI: 0.56-0.96)

PROPEL

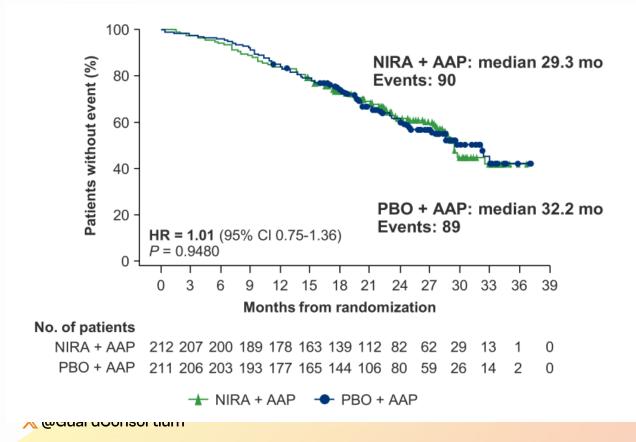

All comers: rPFS HR 0.73 (95%CI: 0.56-0.96)



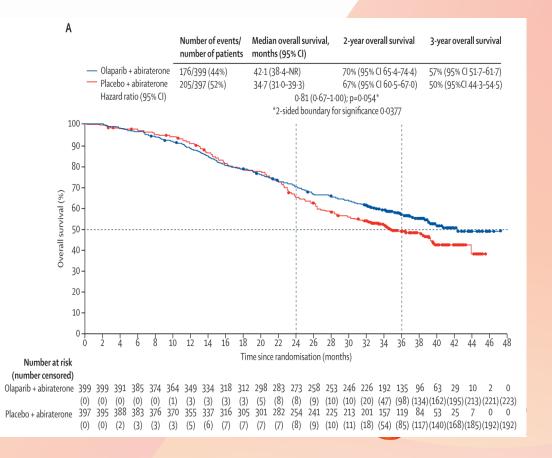

No. at Risk No. at Risk

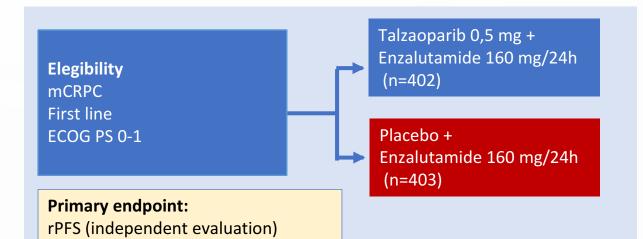
TALAPRO-2

All comers: rPFS HR 0.63 (0.51-0.78); p<0.001



Overall survival


HR 1.01 (95%CI: 0.75-1.36)



HR 0.81 (95%CI 0.67-1); p=0.054

2-sided boundary for significance: 0.037

The TALAPRO-2 trial

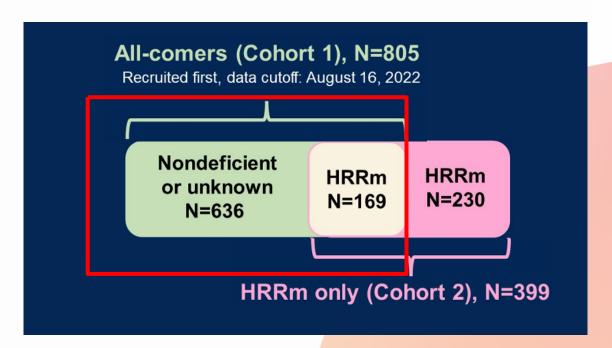
Secondary endpoints:

Time to chemotherapy PFS2 Response rate

Patient-reported outcomes

Safety

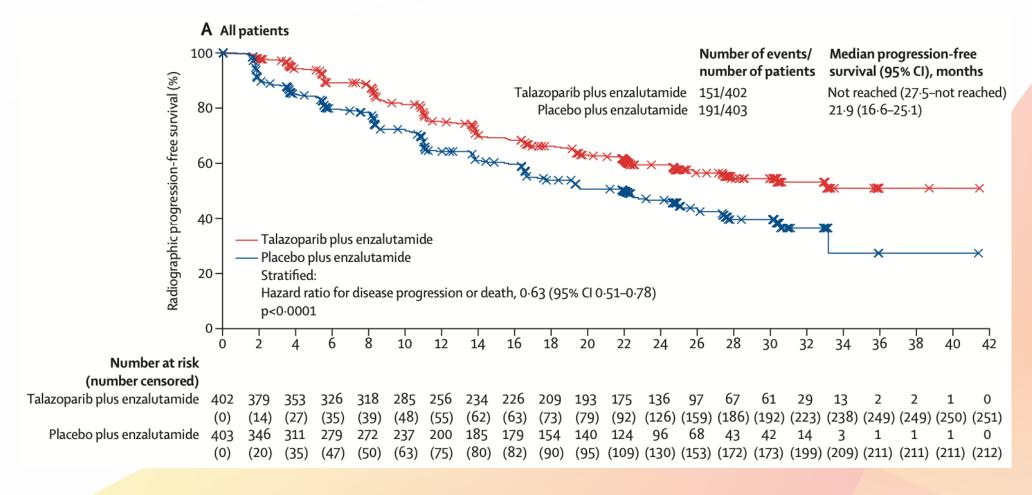
Stratification:

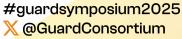

- Treatment with Docetaxel or hormonal agents in CPHSm
- HRR alteration (present vs absent vs unknown)

Prospective genomic assessment:

BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA RAD51C, NBN, MLH1, MRE11A, CDK12

#guardsymposium2025

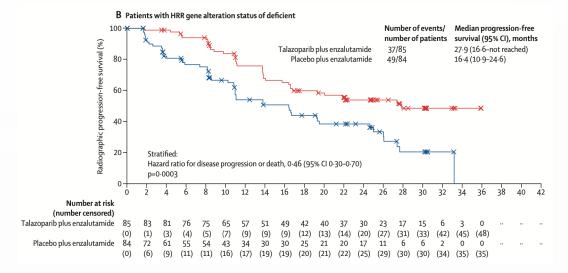

X @GuardConsortium

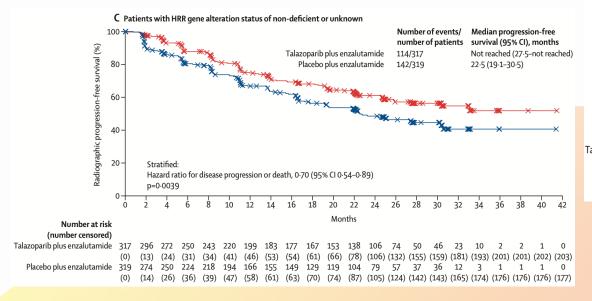


	Enza + Talazo	Enza + Placebo
Docetaxel mHSPC	86 (21%)	93 (23%)
Prior NHA	23 (6%)	27 (7%)
HRRm status		
HRRm	85 (21%)	20.8%
Non-HRRm	207 (51%)	53.1%
HRRm unk	110 (27%)	26.1%
BRCA1/2 alteration	27 (7%)	32 (8%)
		GUARD

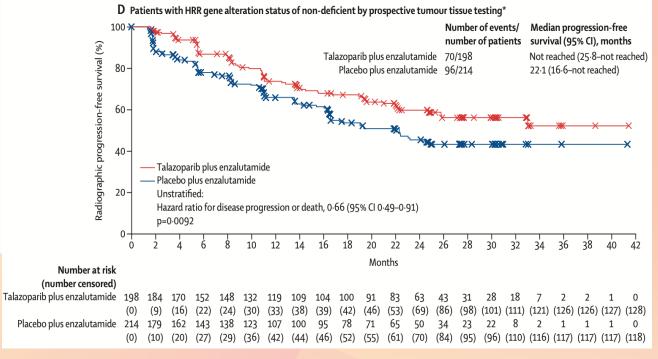
CONSORTIUM

Primary endpoint: significant increase in rPFS (all comers)

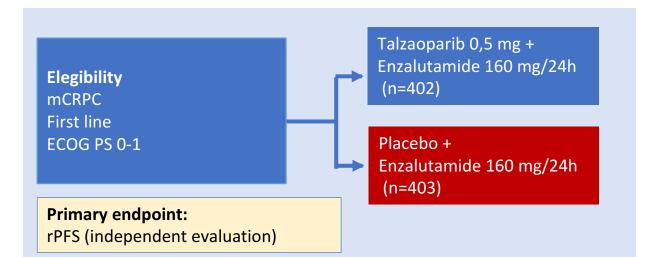



HRR biomarker positive:

HR 0.45 (95%CI 0.30-0.70); p=0.003


HRR biomarker negative/unknown:

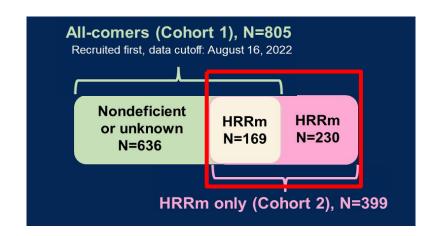
HR 0.70 (95%CI 0.54-0.89); p=0.004


HRR biomarker negative (excluding unknown status):

HR 0.66 (95%CI 0.49-0.91); p=0.009

The TALAPRO-2 trial

Secondary endpoints:

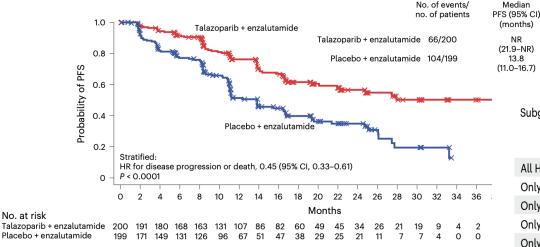

Time to chemotherapy
PFS2
Response rate
Patient-reported outcomes
Safety

Stratification:

 Treatment with Docetaxel or hormonal agents in CPHSm

Prospective genomic assessment:

BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA RAD51C, NBN, MLH1, MRE11A, CDK12

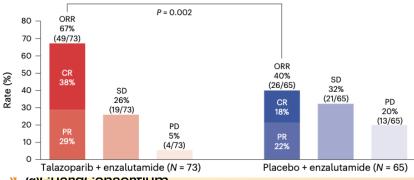


	Enza + Talazo	Enza + Placebo	
Docetaxel mHSPC	57 (28.5%)	60 (30.2%)	
Prior NHA	16 (8%)	16 (8%)	
Tissue source Tissue only Tissue & ctDNA ctDNA only	76 (38%) 121 (60.5%) 3 (1.5%)	80 (40.2%) 115 (57.8%) 4 (2%)	
BRCA1 mutant	5.5%	6%	
BRCA2 mutant	31%	36.7%	

TALAPRO-2: Cohort 2 results

HRR gene alteration: rPFS

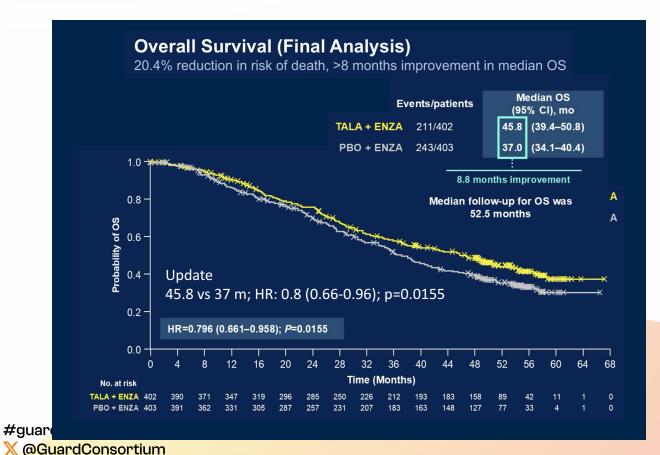
HR 0.45 (95%CI 0.30-0.70); p=0.003


Subgroup analysis (rPFS) by gene alteration

	Subgroup	Talazoparib + enzalutamide	Placebo + enzalutamide	Talazoparib + enzalutamide	Placebo + enzalutamide		Hazard ratio (95% CI)	Two-sided <i>P</i> value
		No. of events/	no. of patients	Median (months)			
	All HRR-deficient	65/198	104/197	NR	13.8	l ⊕ l	0.44 (0.32-0.60)	<0.0001
	Only BRCA1	2/8	5/9	20.0	11.7	•	0.17 (0.02-1.51)	0.07
	Only BRCA2	11/55	40/60	NR	11.0	⊢●⊣	0.19 (0.10-0.38)	<0.0001
	Only PALB2	3/6	4/5	NR	8.6	—	0.56 (0.12-2.51)	0.44
	Only CDK12	12/28	18/30	21.9	13.8	⊢ •	0.49 (0.23-1.02)	0.05
	Only ATM	12/35	7/22	NR	27.7	⊢	0.76 (0.30-1.94)	0.58
	Only CHEK2	8/24	8/24	22.1	NR	⊢ •	0.90 (0.34-2.39)	0.83
	BRCA cluster	15/71	54/84	NR	11.0	⊢●⊣	0.20 (0.11-0.36)	<0.0001
	PALB2 cluster	3/7	6/8	NR	8.3	—	0.46 (0.12-1.87)	0.27
	CDK12 cluster	13/35	23/36	21.9	13.8	\vdash	0.38 (0.19-0.76)	0.004
Ī	ATM cluster	16/43	9/29	27.9	27.7	⊢	0.90 (0.39-2.04)	0.80
↓ I	Other gene cluster	18/42	12/40	22.1	NR	—	1.51 (0.73–3.15)	0.26
					0.01	0.10 1.00	10.00	

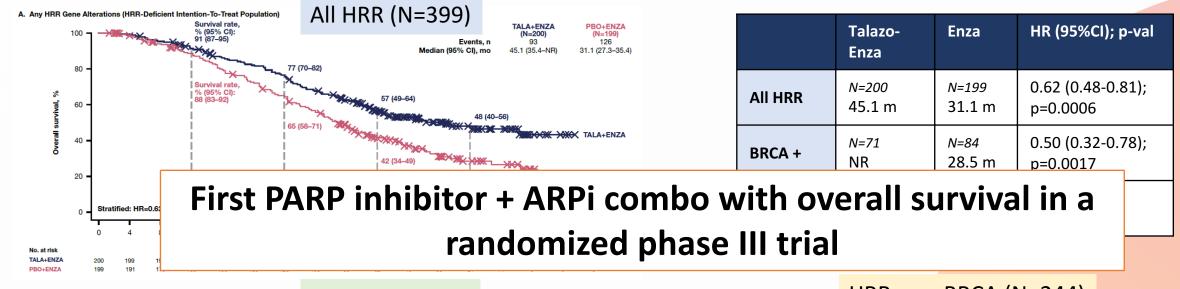
Favors talazoparib + enzalutamide Favors placebo + enzalutamide

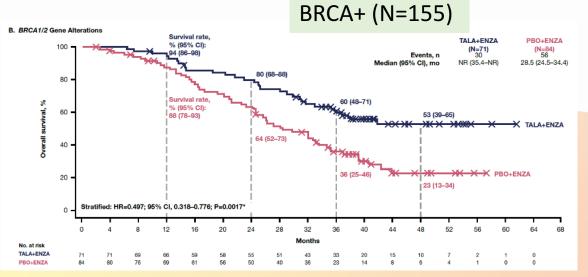
Objective response rate



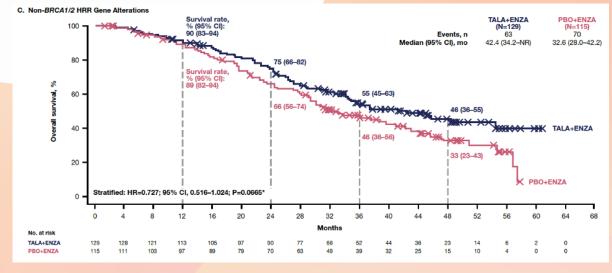
No. at risk

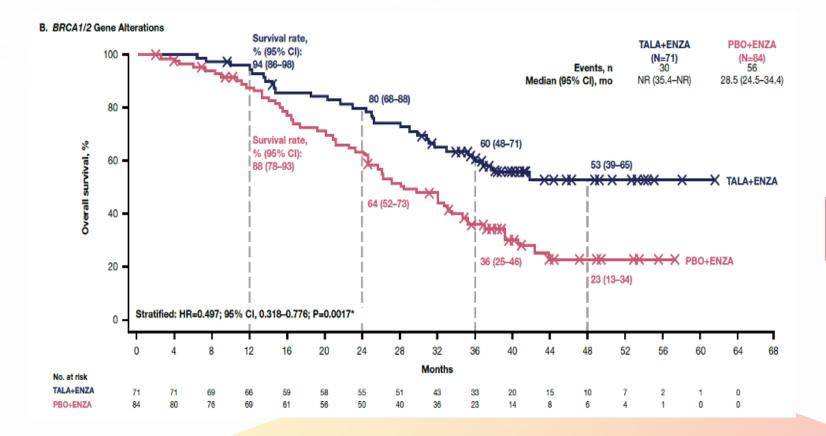
TALAPRO-2: Updated Overall Survival (ASCO GU 2025)


Cohort A (all comers)


Primary analysis (Aug 16 2022) NR vs 36.4m; HR: 0.89 (0.69-1.14); p=0.35 Overall Survival in Subgroups With No Alterations Detected by Both ctDNA and Tumor Tissue (prospective & retrospective)

No BRCA alteration detected Events/ Median OS (95% CI), mo patients 114/219 48.4 (37.2-54.1) TALA + ENZA PBO + ENZA 137/220 37.1 (31.1–40.7) 0.8 Probability of OS 11.3 months improvement 0.4 0.2 HR=0.749 (95% CI, 0.582-0.963); P=0.0237a No. at risk TALA + ENZA 219 213 204 187 172 159 155 135 123 114 102 99 PBO + ENZA 220 214 196 179 164 155 135 121 110 98 84 75 63 39 No HRR alteration detected Median OS Events/ patients (95% CI), mo 46.6 (33.0-54.1) TALA + ENZA 82/154 PBO + ENZA 99/160 37.4 (30.0–40.9) 0.8 9.2 months improvement Probability of 0.6 0.4 0.2 HR=0.782 (0.582-1.050); P=0.1008a


TALAPRO-2: Updated Overall Survival - Cohort B (HRR +) (ASCO GU 2025)



Fizazi et al. ASCO GU 2025

Benefit is greatest in patients with BRCA mutations

	Talazo- Enza	Enza	HR (95%CI); p-val	
OS median	NR	28.5m	0.50 (0.32-0.78); p=0.0017	
2-yr OS	80%	64%	ΔOS: 16%	
3-yr OS	60%	36%	ΔOS: 24%	
4-yr OS	53%	23%	ΔOS: 30%	
PSA50 resp	88.7%	56.2%	-	

Toxicity

Toxicity outcomes in the TALAPRO-2 trial

All-grade toxicity		TALAPRO-2		
		Tala + Enza	Enza	
Anemia		65%	16%	
Neutropenia		32%	7%	
Thrombopenia		23%	3%	
Fatigue		33%	27%	
Nausea		21%	17%	
Hypertension		18%	19%	
Thromboembo	olic events	-	-	
Interruption.	PARPi/Pbo	58%	17%	
	ARSi	34%	16%	
Dose red	PARPi/Pbo	52%	6%	
	ARSi	14%	6%	
Discont PARPi/Pbo		10%	7%	
เพตินสา นออกรอก แน	ARSi	8%	7%	

Improved quality of life

	Number of event	Number of events/number of patients		Hazard ratio (95% CI)	p value
	Talazoparib plus enzalutamide	Placebo plus enzalutamide			
GHS/QoL	64/197	71/197	•	0.69 (0.49–0.97)	0.032
Physical functioning	60/197	82/197 -	•-	0.57 (0.41-0.80)	0.0010
Role functioning	67/197	69/197	•	0.77 (0.55-1.08)	0.12
Emotional functioning	39/197	57/197 →	-	0.48 (0.32-0.72)	0.0004
Cognitive functioning	66/197	73/197	→	0.70 (0.50-0.97)	0.033
Social functioning	61/197	68/197	•	0.75 (0.53-1.06)	0.10
Fatigue	88/197	88/197	+	0.85 (0.63-1.14)	0.27
Nausea and vomiting	24/197	32/197 —	•—	0.56 (0.33-0.95)	0.030
Pain	52/197	74/197 -	•-	0.56 (0.39-0.79)	0.0011
Dyspnoea	45/197	50/197	•	0.68 (0.45-1.02)	0.063
Insomnia	39/197	40/197	•	0.77 (0.50-1.21)	0.26
Appetite loss	52/197	64/197 -	•-	0.60 (0.41-0.87)	0.0061
Constipation	33/197	48/197 -	- -	0.52 (0.34-0.82)	0.0037
Diarrhoea	19/197	21/197 —	•	0.61 (0.32–1.15)	0.12
B EORTC QLQ-PR25					
Urinary symptoms	28/197	37/197 -	-	0.56 (0.34-0.93)	0.022
Bowel symptoms	16/197	21/197 —	-	0.54 (0.28-1.05)	0.064
Hormonal treatment- related symptoms	43/197	41/197	•	0.78 (0.50–1.20)	0.25
Incontinence aid	16/197	14/197	•	1.16 (0.56–2.41)	0.69
	Favours talazopa	ib plus enzalutan	nide Favours place	3 ebo plus enzalutamide	

Do PARPi - NHA combinations eliminate the need for testing?

Who is the ideal candidate for treatment?

The ideal candidate is the one that <u>reflects the clinical trial population</u> expected <u>benefit</u> is <u>greater than anticipated toxicity</u> (disease burden)

ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scan

Do PARPi - NHA combinations eliminate the need for testing

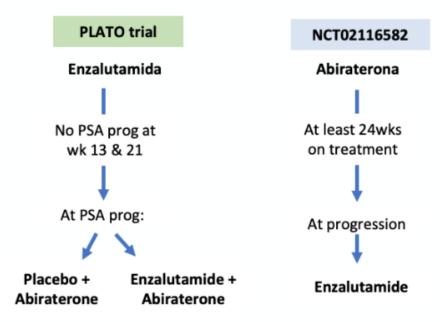
Who is the ideal candidate for treatment?

The ideal candidate is the one that <u>reflects the clinical trial population</u> expected <u>benefit</u> is <u>greater than</u> anticipated <u>toxicity</u> (disease burden)

ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/B<mark>one scan</mark>

What about non-BRCA HRR alterations?

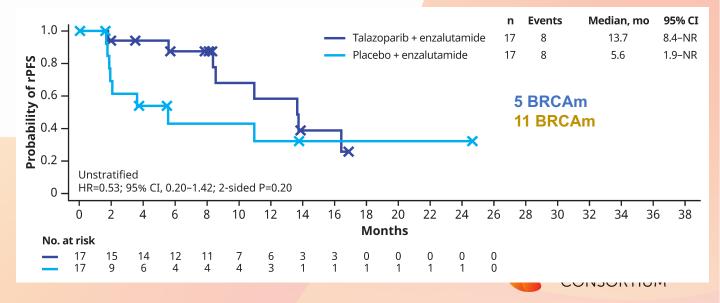
Prior therapy in PARPi + ARSi trials


	Prior ADT only	Prior Docetaxel	Prior ARPi	
PROPEL	PROPEL 77.2%		0.3%	
MAGNITUDE	76.8%	20.1%	3.1%	
TALAPRO-2	TALAPRO-2 71%		7%	

PARPi + NHA combinations

Are results applicable to patients treated with ARPIs in the mHSPC or nmCRPC setting?

Activity of sequential ARPIs is substantially lower than on first-line


	Enz→ Abi	Abi→ Enz
N	251	145
PSA resp	2%	26%
PSA-PFS	2.8 m	5.7 m
rPFS	7 m	8.1 m

TALAPRO-2: 50 pts received prior ARSI (abi or orteronel) in mHSPC

Table 4. rPFS by Previous Treatment With a Second-Generation Androgen Receptor Pathway Inhibitor or With Docetaxel (All-Comers ITT Population)

	TALA + ENZA	PBO + ENZA	TALA + ENZA	PBO + ENZA		
	Even	ts*/N	Median	(95% CI)	HR (95% CI)	P Value
Prior abiraterone [†]						
Yes	15/23 [‡]	16/27§	11.0 (5.6–16.4)	1.9 (1.8–11.0)	0.57 (0.28–1.16)	0.12
No	135/376	172/373	NR (30.4-NR)	22.5 (17.7–26.1)	0.64 (0.51-0.80)	0.0001

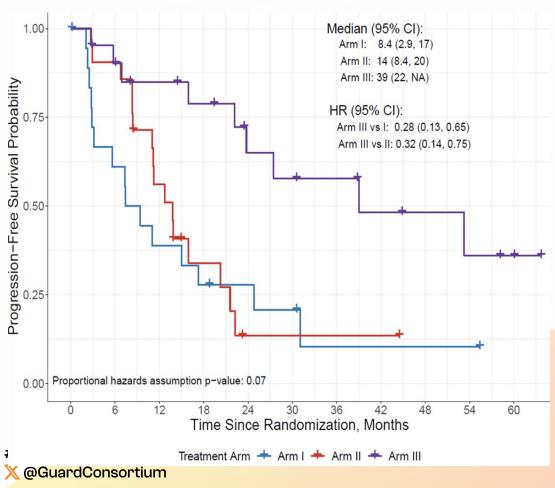
Prior ARPI

A multicenter, open label, randomized phase II trial to evaluate the efficacy of <u>T</u>alazoparib plus <u>E</u>nzalutamide as first line treatment for patients with <u>M</u>etastatic castration resistant <u>P</u>rostate <u>C</u>ancer following progression on <u>A</u>biraterone: TEAM PC study

Prior therapy in PARPi +/- ARSi trials

	Prior ADT only	Prior Docetaxel	Prior ARPi
PROPEL	77.2%	22.5%	0.3%
MAGNITUDE	76.8%	20.1%	3.1%
TALAPRO-2	71%	22%	7%
PROFOUND	0	65%	100%
TRITON-3	0	22%	100%
TALAPRO-1	0	99%	99%
GALAHAD	HAD 0 100%		100%

PARPi + NHA combinations


PARPi monotherapy

#guard<mark>s, researchese</mark> X @GuardConsortium

PARPi monotherapy & PARPi +/- NHT Combination or sequential therapy?

BRCAAWAY Abiraterone + Olaparib upfront vs Abiraterone → Olaparib vs Olaparib → Abiraterone

Primary endpoint: radiographic PFS

	Arm I (n = 19)	Arm II (n = 21)	Arm III (n = 21)
Median PFS, months (95% CI)	8.4 (2.9, 17)	14 (8.4, 20)	39 (22, NR)
Objective RR, % (95% CI)	22 (6.4, 48)	14 (3, 36)	33 (15, 57)
PSA RR, % (95% CI)	61 (36, 83)	67 (43, 85)	95 (76, 100)
Undetectable PSA RR, % (95% CI)	17 (3.6, 41)	14 (3, 36)	33 (15, 57)

16 patients crossed over at progression

	Crossover to Olaparib (n = 8)	Crossover to Abiraterone (n = 8)
Median PFS from crossover, months (95% CI)	8.3 (5.5, 15)	7.2 (2.8, NR)
Median PFS from randomization, months (95% CI)	16 (7.8, 25)	16 (11, NR)

Do PARPi – NHA combinations eliminate the need for testing

Who is the ideal candidate for treatment?

The ideal candidate is the one that <u>reflects the clinical trial population</u> expected <u>benefit</u> is <u>greater than</u> anticipated <u>toxicity</u> (disease burden)

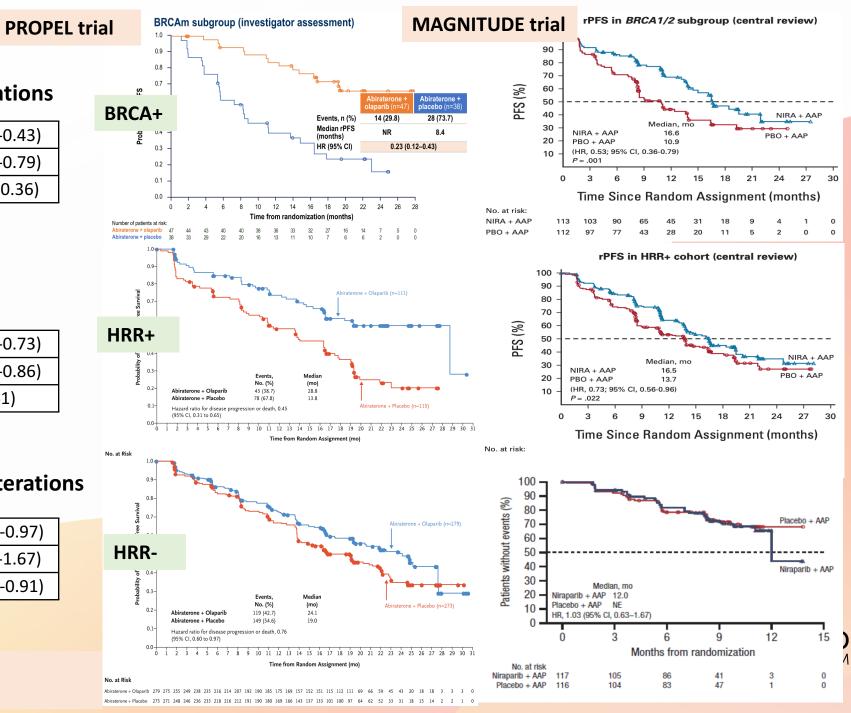
ECOG PS 0-1, adequate hematic-renal function, metastases defined by CT/Bone scan

What about non-BRCA HRR alterations?

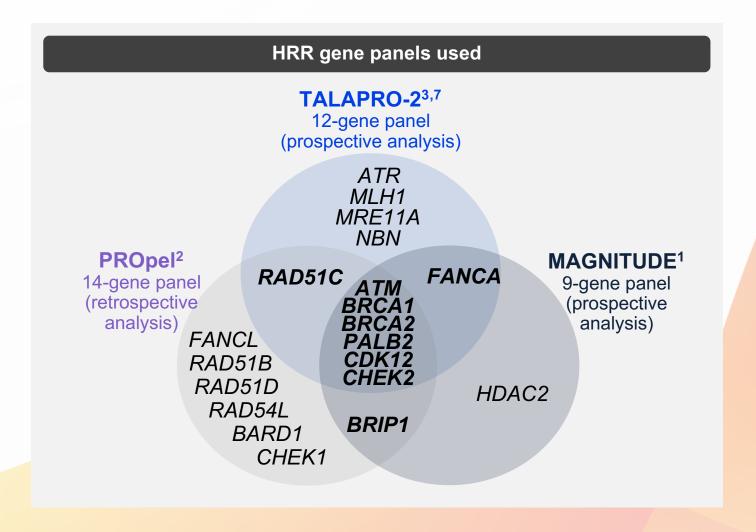
Benefit is greatest with BRCA mutations

PROPEL	HR 0.23 (95%CI 0.12-0.43)
MAGNITUDE	HR 0.53 (95%CI 0.36-0.79)
TALAPRO-2	HR 0.20 (95%CI0.11-0.36)

Intermediate with **HRR mutations**


PROPEL	HR 0.50 (95%CI 0.34-0.73)
MAGNITUDE	HR 0.64 (95%CI 0.49-0.86)
TALAPRO-2	HR 0.45 (0.33-0.61)

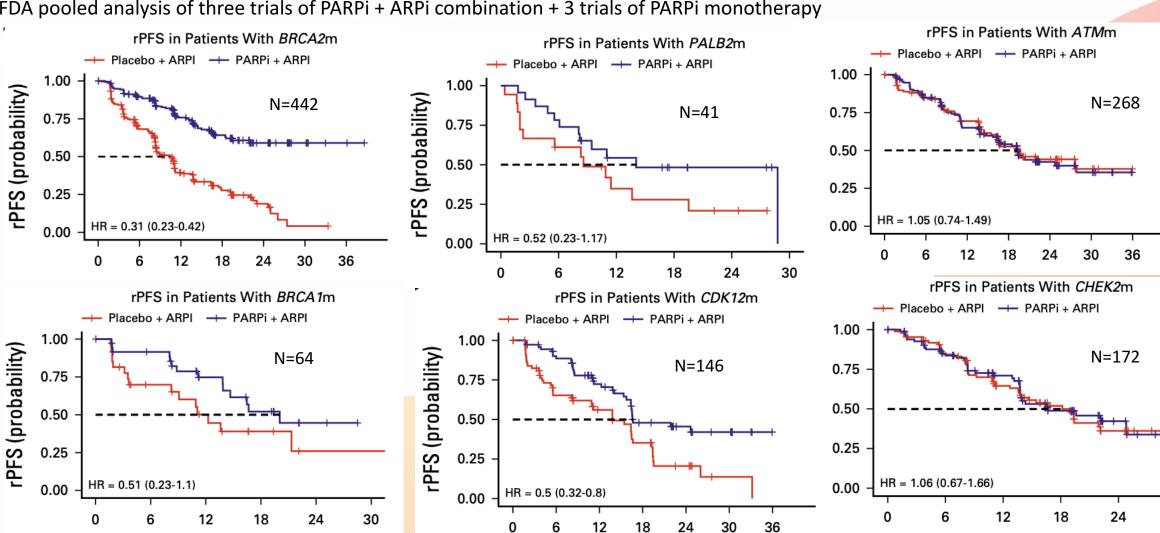
Lowest in patients without HRR alterations


PROPEL	HR 0.76 (95%CI: 0.60-0.97)
MAGNITUDE	HR 1.03 (95%CI 0.63-1.67)
TALAPRO-2	HR 0.66 (95%CI: 0.49-0.91)

#guardsymposium2025

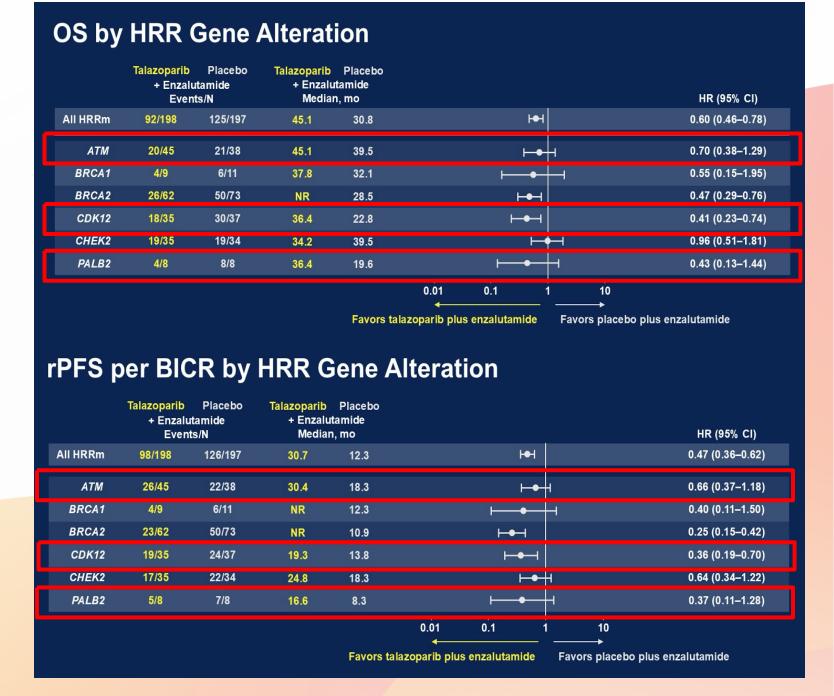
Clarke et al. NEJM Evidence 2023. Saad et al. Lancet Oncol 2023. Chi et al. J Clin Oncol 2023. Chi et al. Ann Oncol 2023. Agarwal et al. Lancet Oncol 2023. Fizazi et al. Nature Med 2024.

Non-BRCA HRR is an elusive term



Patient selection for non-BRCA HRR

FDA pooled analysis of three trials of PARPi + ARPi combination + 3 trials of PARPi monotherapy



30

M @Guai uoonsoi uuni

TALAPRO-2: Benefit in individual non-BRCA HRR alterations

Benefit in some non-BRCA HRR alterations

Do PARPi - NHA combinations eliminate the need for testing?

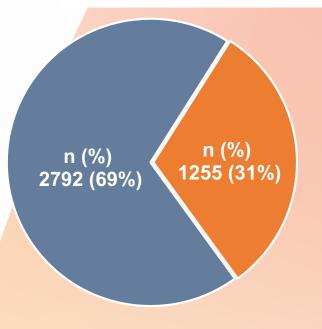
Who is the ideal candidate for treatment?

Assessing DNA repair defects on tumor tissue

- Tumor testing is the gold standard (high clinical sensitivity)
- DNA repair alterations are early events
- Fresh or achival tumor samples can be used (older samples have lower success rates)
- Can capture both germline and somatic mutations

PROFOUND study: primary vs metastatic tissue	HHR gene alteration prevalence %	
All patients	27.9%	
All primary tumors Archived primary Newly collected primary	27% 27% 26.5%	
All metastatic tumors Archived metastatic Newly collected metastatic	32.3% 33.9% 29.7%	

High failure rates (~30%)


Rates of tissue failure

Trial	(%)
PROFOUND	31%
TRITON2	32%
IPATENTIAL 150	33%

Single-site biopsies do not capture intra-individual heterogeneity

Sample selection and optimisation of tissue collection is critical

PROFOUND study

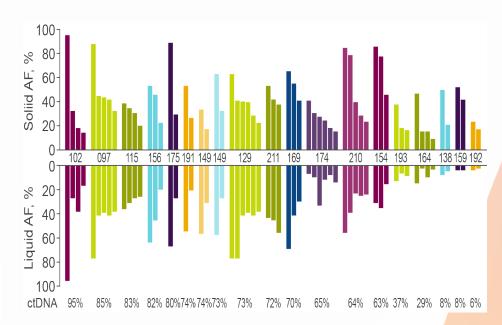
Assessing DNA repair defects in ctDNA

Circulating tumor DNA assessment

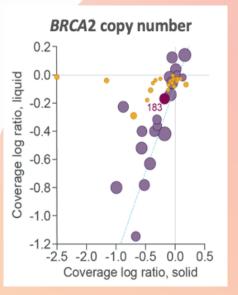
Non-invasive, safer, serial analysis
Useful where no tissue is available
Can detect both germline and somatic mutations
Capture relative contribution of metastases in
different anatomical sites

But...

Biallelic deletions associated with greatest benefit to PARP inhibitors


% pts with ctDNA fraction >20% was 47% (401/856) in TRITON2 & 28% (233/818) in TRITON3

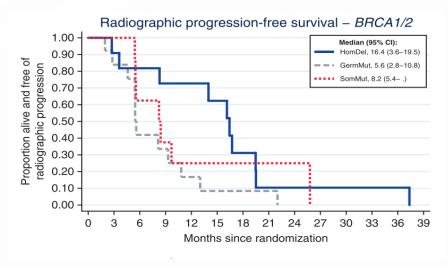
ctDNA fraction may sharply decline only weeks after initial ADT (in mHSPC)

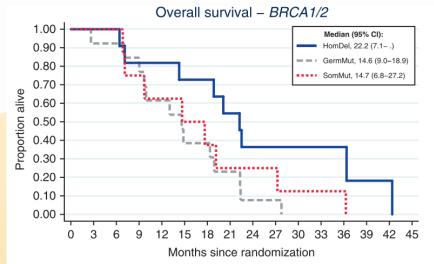

#guardsymposium2025

X @GuardConsortium

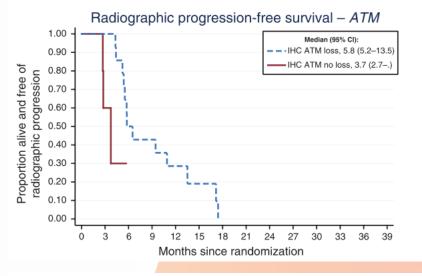
Similar mutation profiles

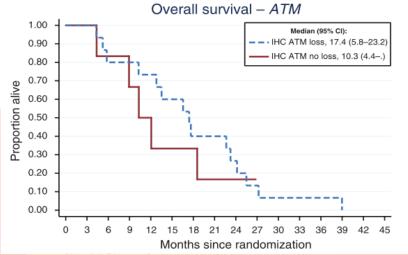
Similar copy number alterations


	Mutations	Monoallelic deletions	Biallelic deletions	Amplific
ctDNA, %	>0.1	>5–10	>10-15	>2-5
% mCRPC Pts	>80%	50%	40%	CN dependent

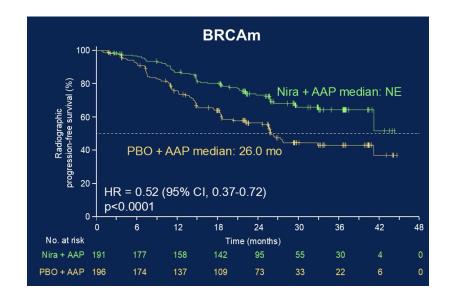

CONSORTIUM

Not all BRCA mutants are the same


Biallelic BRCA2 mutations derive the greatest benefit from PARP inhibition

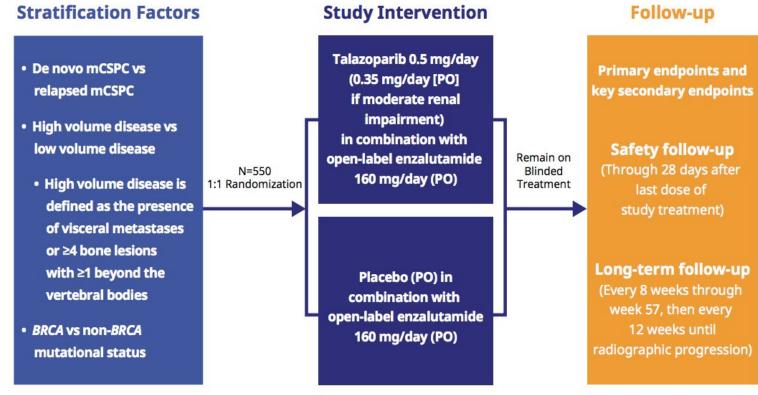

Homozygous BRCA deletions

ATM loss by IHC



#guardsymposium2025 X @GuardConsortium

Carreira et al. Cancer Discov 2021


When to test?

ASCO 2025: Niraparib +
Abiraterone improves rPFS in
mHSPC HRR mutant population

TALAPRO-3: talazoparib plus enzalutamide versus placebo plus enzalutamide in men with mCSPC with DDR/HRR alterations.

- •Alterations in 12 DDR/HRR genes (ATM, ATR, BRCA1, BRCA2, CDK12, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C)
- Metastatic disease (no brain metastases)

TALAPRO-2. Who should we test? Who is the ideal candidate for treatment?

- Test <u>all metastatic patients</u> because testing has **prognostic, predictive and family risk** implications Test as soon as possible (currently mCRPC, implications for mHSPC therapy coming soon)
- Alterations in **HRR genes** identify candidates for treatment with PARP inhibitors (monotherapy or in combination with NHAs)
- Talazoparib + Enzalutamide is the only PARPi + NHA combo that has proven overall survival benefit in a randomized phase III trial

Greatest benefits in BRCA mutants but evidence of benefit with other alterations

- Outstanding issues when **finding the ideal candidate for treatment**What is the HRR alteration? What type of alteration (point mutation, biallelic deletion...)
What was the patient's prior therapy? Was the prior ARPi abiraterone or apa/enza/daro?
What is the patient's general status? What is the burden of disease?
What are the goals of treatment?

Thank you!

¡Gracias!

